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We consider a version of large population games whose agents compete for resources using strategies with
adaptable preferences. The games can be used to model economic markets, ecosystems, or distributed control.
Diversity of initial preferences of strategies is introduced by randomly assigning biases to the strategies of
different agents. We find that diversity among the agents reduces their maladaptive behavior. We find interest-
ing scaling relations with diversity for the variance and other parameters such as the convergence time, the
fraction of fickle agents, and the variance of wealth, illustrating their dynamical origin. When diversity in-
creases, the scaling dynamics is modified by kinetic sampling and waiting effects. Analyses yield excellent
agreement with simulations.
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I. INTRODUCTION

Many natural and artificial systems involve interacting
agents, each making independent decisions to compete for
limited resources, but globally exhibit coordinated behavior
through their mutual adaptationf1–4g. Examples include the
formation of ecological patterns due to the competition of
predators hunting for food, the price adjustment due to the
competition of buyers or sellers in economic markets, and
the load adjustment due to the competition of distributed
controllers of packet flows in computer networks. While a
standard approach is to analyze the steady-state behavior of
the system described by the Nash equilibriaf5g, it is legiti-
mate to consider how the steady state is approached, since
such processes are dynamical in nature, and the approach
may be affected by the presence of periodic, chaotic, or
metastable attractors. Dynamical studies are especially rel-
evant when one considers the effects of changing environ-
ment, as in economics or distributed control.

The recently proposed minority gamessMGsd are proto-
types of such multiagent systemsf4g. Extensive studies have
revealed the steady-state properties of the game when the
complexity of the agents is highf6g. On the other hand, the
dynamical nature of the adaptive processes is revealed when
the complexity of the agents is low, wherein the final states
of the system depend on the initial conditions, and the sys-
tem often ends up with large fluctuations in the final state,
very remote from the efficient state predicted by equilibrium
studiesf6,7,8g. The large fluctuations in the original MG are
related to the uniformly zero preference of strategies for all
agents. This has to be reexamined for at least two reasons.
First, when the game is used to model economic systems, it
is not realistic to expect that all agents have the same pref-
erence when they enter the market. Rather, the agents have
their own preferences according to their individual objec-
tives, expectations, and available capital. For example, some
have stronger inclinations toward aggressive strategies, and
others are more conservative. Furthermore, in games that use
public information only, identical initial preferences imply
that different agents would maintain identical preferences of
strategies at all subsequent steps of the game, which is again
unlikely. Second, when the game is used to model distributed

control in multiagent systems, identical preferences of strat-
egies of the agents lead tomaladaptivebehavior; this refers
to bursts of the population’s decisions due to the agents’
premature rush to certain statesf9,10g. As a result, the popu-
lation difference between the majority and minority groups is
large. For economic markets, this corresponds to large price
fluctuations; for distributed control, it corresponds to an un-
even resource allocation; both imply low system efficiency.
Hence, maladaptation hinders the attainment of optimal sys-
tem efficiency.

There have been many attempts to improve the system
efficiency. For example, thermal noisef11g and biased strat-
egiesf12g are found to reduce the fluctuations. More relevant
to this work, there were indications that maladaptation can
be reduced by appropriate choices of the initial condition in
the low complexity phase. The dependence of initial condi-
tions was noted in the replica approach to the exogenous MG
f6,8g. System efficiency can be improved by random initial
conditions in the original MGf13g, or systems driven by
vectorized external informationf7g. It was noted that reduced
variance can be obtained hysteretically by quasistatic in-
crease and decrease of the complexity from an unbiased ini-
tial condition, clearly demonstrating the nonequilibrium na-
ture of this phenomenonf14g. By generalizing the strategy
evaluation mechanism to the batch mode, and using a payoff
function linear in the winning margin, the generating func-
tional analysis showed that fluctuations are reduced by bi-
ased starts of the agents’ strategy payoff valuationsf15g. The
same is valid in its noisy extensionf16g. However, no sys-
tematic studies about the effects of random biases have been
made.

In this paper, we consider the effects of randomness in the
initial preferences of strategies among the agents. Initial con-
ditions can be selected to make the system dynamics com-
pletely deterministic, thus yielding highly precise simulation
results useful for refined comparison with theories. As we
shall see, a consequence of thisdiversity is that agents shar-
ing common strategies are less likely to adopt them at the
same time, and maladaptation is reduced. This results in an
improved system efficiency, as reflected by the reduced vari-
ance of the population decisions. We find interesting scaling
relations with the diversity for the variance, and a number of
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dynamical parameters, such as the convergence time, the
fraction of fickle agents, and the variance of wealth, illustrat-
ing their dynamical origin. When diversity increases, we find
that the scaling dynamics is modified by a sampling mecha-
nism self-imposed by the requirement of the dynamics to
stay in the attractor, an effect we termkinetic sampling. Pre-
liminary results have been sketched inf17g.

This paper is organized as follows. After introducing the
minority game in Sec. II, we discuss the variation of fluctua-
tions when diversity increases, identifying three regimes of
behavior: multinomial, scaling, and kinetic sampling, ana-
lyzed in Secs. III–V, respectively. In addition to the fluctua-
tions, other dynamical properties, namely, the fraction of
fickle agents, the convergence time, and the variance of
wealth, are discussed in Secs. VI–VIII, respectively. The pa-
per is concluded in Sec. IX.

II. THE MINORITY GAME

We consider a population ofN agents competing selfishly
to be in the minority group in an environment of limited
resources,N being oddf4g. Each of theN agents can make a
decision 1 or 0 at each time step, and the minority group
wins. For typical control tasks such as the distribution of
shared resources, the decisions 1 and 0 may represent two
atternative resources, so that fewer agents utilizing a re-
source implies more abundance. For economic markets, the
decisions 1 and 0 correspond to buying and selling, respec-
tively, so that the buyers can win by belonging to the minor-
ity group, as a consequence of the price being pushed down
when supply is greater than demand, and vice versa.

Each agent makes her decision independently according
to her own finite set of strategies, randomly picked before the
game starts. Each of hers strategies is based on the history of
the game, which is the time series of the winning bits in the
most recentm steps. Hence,m is the memory size. There are
D;2m possible histories; thusD is the dimension of the
strategy space. While most previous work considered the
caseD,N, we will mainly study the casem*1 in this pa-
per. As we shall see, this simplification enables us to make a
detailed analysis of the system, revealing many additional
features.

A strategy is then a Boolean function which maps each of
the D histories to the decision 1 or 0. Denoting the winning
state at timet by sstd fsstd=1, 0g, we can convert anm-bit
history sst−m+1d ,… ,sstd to an integerhistorical state
m*std of moduloD, given by

m*std = o
t8=0

m−1

sst − t8d2t8, s1d

and the Boolean decisions of strategya responding to input
statem are denoted bysa

m=1, 0, corresponding to the binary
decisionsja

m= ±1 via ja
m;2sa

m−1. For subsequent analyses
of strategies, the labela of a strategy is given by an integer
between 0 and 2D−1, where

a = o
m=0

D−1

sa
m2D−1−m. s2d

The success of a strategy is measured by itscumulative
payoff salso calledvirtual point in the literatured, which in-
creasessdecreasesd by 1 if it indicates a winningslosingd
decision at a time step. Note that the payoffs attributed to the
strategies at each step depend only on the signs of the deci-
sions, and are independent of the magnitude of the winning
margins. This is called thestep payoff, and follows the origi-
nal version of the MGf4g. Many recent studies used payoffs
with magnitudes increasing with the difference between the
majority and minority populations. In particular, payoffs that
are linear in the population difference are calledlinear pay-
offs, and are found convenient in the application of analytical
techniques such as the replica methodf6g or the generating
functional analysisf15g. In the analysis of this paper, the step
payoff is more convenient.

At each time step, each agent chooses, out of hers strat-
egies, the one with the highest cumulative payoffsupdated at
every step irrespective of whether it is adopted or notd and
makes decisions accordingly. The difference between the to-
tal number of winning and losing decisions of an agent up to
a time step is called herwealth at that time. The long-term
goal of an agent is to maximize her wealth.

To model diversity among the agents, the agents may en-
ter the game with diverse preferences of their strategies. This
means that each agent has random integerbiasesto the initial
cumulative payoffs of each of hers strategies. We are inter-
ested in how the extent of randomness affects the system
behavior, and there are many choices of the bias distribution.
A natural choice is the multinomial distribution, which can
be modeled by assigning integer biases to thes strategies of
each agent, which add up to an odd integerR. Then, the
biased payoff of a strategy of an agent obeys a multinomial
distribution with meanR/s and varianceRss−1d /s2. The ra-
tio r;R/N is referred to as thediversity.

For the binomial cases=2 and oddR, which will be stud-
ied here, no two strategies have the same cumulative payoffs
throughout the game. Hence there are no ties, and the dy-
namics of the game is deterministic, resulting in highly pre-
cise simulation results useful for refined comparison with
theories. This is in contrast with previous versions of the
game, which correspond to the special case ofR=0.

Furthermore, for an agent holding strategiesa andb swith
a,bd, the biases affect her decisions only through the bias
differencev of strategya with respect tob. Hence we let
Sabsvd be the number of agents holding strategiesa and b,
where the bias of strategya is displaced byv with respect to
b, and its disordered average is

kSabsvdl =
N

22D−1

1

2R1 R

R− v

2
2 . s3d

To describe the macroscopic dynamics of the system, we
define theD-dimensional phase space with the components
Amstd, which is the fraction of agents making decision 1 re-
sponding to inputm of their used strategies, with the fraction
making decision 0 subtracted. While only one of theD com-
ponents corresponds to the historical statem*std of the sys-
tem, the augmentation toD components is necessary to de-

WONG, LIM, AND GAO PHYSICAL REVIEW E 71, 066103s2005d

066103-2



scribe the attractor structure and the transient behavior of the
system dynamics.

The key to analyzing the system dynamics is the observa-
tion that the cumulative payoffs of all strategies displace by
exactly the same amount as the game proceeds, though their
initial values may be different. Hence for a given strategy
pair, the profile of the cumulative payoff distribution remains
binomial, but the peak position shifts with the game dynam-
ics. Hence, once the cumulative payoffs are known, the state
location in theD-dimensional phase space is given by

Amstd =
1

N
o

a,b,v
SabsvdhQ„v + Vastd − Vbstd…ja

m

+ Q„− v − Vastd + Vbstd…ja
mj +

1

N
o
a

Saja
m, s4d

whereVastd is the cumulative payoff of strategya at time
t , Sa is the number of agents holding two identical strategies
labeleda, and Qsxd is the step function ofx. For agents
holding nonidentical strategiesa,b, the agents make deci-
sions according to strategya if v+Vastd−Vastd.0, and use
strategyb otherwise. Hencev+Vastd−Vbstd is referred to as
thepreferenceof a with respect tob. In turn, the cumulative
payoff of a strategya is updated by

Vast + 1d = Vastd − ja
m* stdsgnAm* stdstd. s5d

Figure 1sad illustrates the convergence to the attractor for
the visualizable case ofm=1. The dynamics proceeds in the

direction that tends to reduce the magnitude of the compo-
nents ofAmstd f6g. However, a certain amount of maladapta-
tion always exists in the system, so that the components of
Amstd overshoot, resulting in periodic attractors of period 2D,
as reported in the literaturef18,19g. The state evolution is
given by the integer equation

m*st + 1d = mod„2m*std + sstd,D…, s6d

so that every statem appears as a historical state twice in a
steady-state period, withsstd appearing as 0 and 1, each
exactly once. One occurrence bringsAm from positive to
negative, and the other brings it back from negative to posi-
tive, thus completing a cycle. The components keep on os-
cillating, but never reach zero. This results in anantipersis-
tent time seriesf20g. For the example in Fig. 1sad, the steady
state is described by the sequence

mstd = sstd = 0,1,1,0, s7d

where one notes that both states 0 and 1 are followed by 0
and 1 once each.

For m=2, there are two attractor sequences as shown in
Fig. 1sbd,

mstd = 0,1,3,3,2,1,2,0 s8d

and

mstd = 0,1,2,1,3,3,2,0. s9d

Again, one notes that each of the states 0, 1, 2, 3 is followed
by an evenfsstd=0g and an odd statefsstd=1g once each.
Furthermore, we note that the attractor sequences in Eqs.s8d
and s9d are related by the conjugation symmetrymstd→3
−mstd. For general values ofm, an attractor sequence can be
obtained by starting with the statem*s0d=ss0d=0, and as-
signingsstd=1 if the value ofm*std appears the first time in
the sequence, and 0 the second time, such as the attracters in
Eqs.s7d ands8d. In general, other attractor sequences can be
obtained by computer search, and the number of attractor
sequences can be verified to be 2D /2D, which forms the de
Bruijn sequence in terms ofm, corresponding to the number
of distinct ring configurations of length 2D, for which all
substrings of lengthm+1 are distinctf21g.

The population averages of the decisions oscillate around
0 at the steady state. Since a large difference between the
majority and minority populations implies inefficient re-
source allocation, the inefficiency of the game is often char-
acterized by the normalized variances2/N of the population
making decision 1 at the steady state. Since this population
size at timet is given byNs1−Am* std

d /2, we have

s2

N
= lim

t→`

N

4
Šfm* std − km* stdltg2

‹t, s10d

wherek lt denotes the time average at the steady state.
As shown in Fig. 2, the variances2/N of the population

for decision 1 scales as a function of thecomplexity a
;D /N, agreeing with previous observationsf9g. Whena is
small, games with increasing complexity create time series
of decreasing fluctuations. A phase transition takes place
around ac<0.3, after which it increases gradually to the

FIG. 1. sad The state motion of a sample in the phase space for
m=1, s=2, N=1023, andR=16 383. Empty dots: transient states.
Solid dots: attractor states.sbd The attractors in the phase subspace
of A1 andA2 for m=2. Six of the eight states remain in the second
quadrant of the subspace formed byA3 andA0. The location of the
other two states is indicated in theA3 andA0 subspace, instead of
the A1 and A2 subspace. The numbers in the circles denote the
elements of the attractor sequences in Eqs.s8d and s9d.
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limit of random decisions, withs2/N=0.25. Whena,ac,
the occurrences of decisions 1 and 0 responding to a given
historical statem are equal, and this is referred to as the
symmetricphasef22g. On the other hand, in theasymmetric
phase aboveac, the occurrences of decisions are biased for at
least some historym.

Figure 2 also shows the data collapse of the variance for
different values of diversityr. It is observed that the variance
decreases significantly with diversity in the symmetric phase,
and remains unaffected in the asymmetric phasef23g. Fur-
thermore, for a game efficiency prescribed by a given vari-
ances2/N, the required complexity of the agents is much
reduced.

The dependence of the variance on the diversity is further
shown in Figs. 3 and 4 for memory sizesm=1 and 2, respec-
tively. The following three regimes can be identified and
explained in Secs. III–V, respectively:sad multinomial re-
gimewhenr,N−1, s2/N,N with proportionality constants

dependent onm; sbd scaling regimewhen r,1,s2/N,r−1

with proportionality constants independent ofm for m not
too large;scd kinetic sampling regimewhenr,N, s2/N de-
viates above the scaling withr−1 due to kinetic sampling
effects as explained below, and the scaling is given by
s2/N, fmsDd /N, whereD is thekinetic step sizegiven by

D ; NÎ 2

pR
=Î2N

pr
, s11d

and fm is a function dependent on the memory sizem.
To analyze the behavior in these regimes, we derive the

following expression for the step:DAmstd;Amst+1d−Amstd
at time t. Using Eq.s4d, we have

DAmstd =
1

N
o

a,b,v
SabsvdhQ„v + Vast + 1d − Vbst + 1d…

− Q„v + Vastd − Vbstd…jsja
m − jb

md. s12d

Since the arguments of the step functions are odd integers,
nonzero contributions to Eq.s12d come from terms with
v+Vast+1d−Vbst+1d= ±1 and v+Vastd−Vbstd= 71. Us-
ing Eq. s5d, the two arguments differ by −sja

m−jb
mdsgnAmstd

with m=m*std. Hence the conditions for nonzero contribu-
tions become equivalent tov+Vastd−Vbstd= 71 and ja

m

−jb
m= 72sgnAmstd for m=m*std. This reduces the steps to

DAmstd =
1

N
o

a,b,v,±
Sabsvdd„v + Vastd − Vbstd ± 1…

3d„ja
m − jb

m ± 2sgnAmstd…s±dsja
m − jb

md, s13d

where m=m*std, and dsnd=1 if n=0 and 0 otherwise. For
m=m*std, this can be further simplified to

FIG. 2. The dependence of the variance of the population mak-
ing decision1 on the complexity for different diversities ats=2
averaged over 128 samples. The horizontal dotted line is the limit of
random decisions.

FIG. 3. The dependence of the variance of the population mak-
ing decision1 on the diversity atm=1 ands=2. Symbols: simu-
lation results averaged over 1024 samples. Solid lines: theory.
Dash-dotted line: scaling prediction.

FIG. 4. The dependence of the variance of the population mak-
ing decision1 on the diversity atm=2 ands=2. Notations are the
same as those of Fig. 3. Inset: A comparison of the variances at
m=1 and 2 in Figs. 3 and 4.
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DAmstd = − sgnAmstd
2

N
o

a,b,±
Sab„71 − Vastd + Vbstd…

3d„ja
m − jb

m ± 2sgnAmstd…. s14d

To interpret this result, we note that changes inAmstd are only
contributed byfickle agents with marginal preferences for
their strategies. That is, those withv+Vastd−Vbstd= ±1 and
ja

m−jb
m= 72sgnAmstd for m=m*std. Furthermore, the step

points in the direction that reduces the magnitude ofAmstd.
Similarly, the steps along the directionn other than the

historical statem*std are given by

DAnstd =
1

N
Sab„71 − Vastd + Vbstd…d„ja

m − mb
m ± 2sgnAmstd…

3s±dsja
n − jb

nd s15d

wherem=m*std. This shows that the steps along the nonhis-
torical direction are contributed by the subset of those fickle
agents that contribute to the step along the historical direc-
tion, and they can be positive or negative.

Next we consider the disordered average of the steps in
Eq. s13d. For this purpose, it is convenient to decompose the
cumulative payoffs as

Vastd = o
m

kmstdja
m, s16d

wherekmstd is the number of wins minus losses of decision 1
up to time t when the game responded to historym. Since
there are 2D variables ofVastd andD variables ofkmstd, this
decomposition greatly simplifies the analysis, and describes
explicity howVastd depends on the strategy decisions. Intro-
ducing the integral representation of the Kroneckad for the
preference, we can factorize the contributions ofVastd
−Vbstd into a product over the states,

d„v + Vastd − Vbstd ± 1… =E
0

2p du

2p
eiusv±1dp

l

eiuklsja
l−jb

ld,

s17d

where the explicit dependence ont is omitted for conve-
nience here and in the subsequent derivation. Using the iden-
tities

d„ja
m − jb

m ± 2sgnAmstd… =
1

4
f1 7 sja

m − jb
mdsgnAm − ja

mjb
mg,

s18d

eifsja
m−jb

md = cos2f + sja
m − jb

mdi sinf cosf + ja
mjb

msin2f,

s19d

and introducing the average in Eq.s3d, we obtain the follow-
ing factorized expression from Eq.s13d for m=m*std:

kDAmstdl =
1

22D−1 o
a,b,v,± 1

R

R− v

2
2 1

2RE
0

2p du

2p
eiusv±1d

3
1

4
f1 7 sja

m − jb
mdsgnAm − ja

mjb
mgs±dsja

m − jb
md

3fcos2kmu + sja
m − jb

mdi sinkmu coskmu

+ ja
mjb

msin2kmug p
lÞm

fcos2klu + sja
l − jb

ld

3i sinklu cosklu + ja
ljb

lsin2klug. s20d

The summation overa,b can now be replaced by one-half
times the independent summations overa andb. Noting that
for given statesm ,n ,… ,l,

o
a

ja
mja

n
¯ ja

l = 0, s21d

we find that all terms in the expansion of Eq.s20d vanish if
they contain unpaired decisionsja

n or jb
n. The final result is

kDAmstdl = − sgnAmE
0

2p du

2p
cosRu

3coss2km − sgnAmdu p
nÞm

cos2knu. s22d

Equation s22d describes the change induced by the payoff
componentkmstd incremented by −sgnAmstd. Since the step
size depends on time implicitly through the payoff compo-
nents, the sum of all changes induced bykmstd incremented
from 0 yields

kAmstd − Ams0dl =E
0

2p du

2p
cosRu

sinkmu coskmu

sinu
p
nÞm

cos2knu.

s23d

Similarly, the steps along the nonhistorical direction are
given by

kDAnstdl =E
0

2p

cosRu sinknu cosknu sins2kmsgnAm

− 1du p
lÞmn

cos2klu, s24d

where nÞm*std=m. The same result can be obtained from
Eq. s23d by considering the difference of two equations when
one of the states labeledn becomes historical andkn changes
by −sgnAn.

III. THE MULTINOMIAL REGIME

Whenr,N−1 or R,1, there is a finite number of clusters
of agents who make identical decisions throughout the game.
Since there are many agents in a typical cluster, their identi-
cal decisions will cause large fluctuations in their behavior.
Consider the example ofm=1 andR=1. There are only four
strategies. For a pair of distinct strategies, there is an average
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of N/8 agents picking them, andN/16 agents in each cluster
with biases ±1. As a result, we haves2/N,N. The propor-
tionality constant depends onm, and is sensitive to the pro-
file of the bias distribution. Since we consider the multino-
mial distribution in Eq.s3d in this paper, we call this the
multinomial regime. Another choice in the literature is the
bimodal distributionf7,13–16g, which may have different be-
havior.

Consider the casem=1. Equationss22d and s24d show
that the step sizekDAmstdl,Os1d and is thus self-averaging.
Since Ams0d is Gaussian with varianceN−1, the values of
Amstd at the attractors can be computed toOs1d. Depending
on the initial positionAs0d; (A1s0d ,A0s0d), four attractors
can be identified. For example, ifAs0d lies in the first quad-
rant, and the initial historical state is 0, then the payoff com-
ponentsk ; (k1std ,k0std) at the attractor are given byks0d
=s0,0d , ks1d=s−1,0d , ks2d=s−1,−1d , ks3d=s−1,0d, pro-
vided that whenDAmstd=0 to order 1,DAmstd is also equal to
0 to orderN−1/2. Analysis can be simplified by noting that
when the payoff componentskmstd are restricted to the values
0 and ±1, Eq.s23d can be written as

Amstd = kmE
0

2p du

2p
scosudfR+1+2 o

nÞm
uknug = kmcfR+1+2 o

nÞm
uknug,

s25d

wherecn;2−nsn/2
n d for even integern, and we have used the

facts thatAmstd is self-averaging,Ams0d,N−1/2. The loca-
tions of the four attractors are shown in Fig. 5 and summa-
rized in Table I.

The variance ofAmstd of the historical statesm=m*std,
averaged over the period for each of the four attractors, can
be obtained from Table I. The variance of decisions in Eq.

s10d, averaged over the four attractors, is then given by

s2

N
=

N

128
s7cR+1

2 − 2cR+1cR+3 + 7cR+3
2 d. s26d

The theoretical values are compared with simulation results
for the first three points of each curve corresponding to given
values ofN in Fig. 3. The agreement is excellent. Note that
the variance in this regime deviates from the scaling relation
with r−1 in the next regime, as evident from the splaying
down from the linear relation in Fig. 3. However, when
R@1, cR+1<cR+3<Î2/pR, s2/N reduces to 3/16pr,
showing that the deviation from ther−1 scaling gradually
vanishes.

Now consider the casem=2. Starting from initial posi-
tions near the origin of the four-dimensional phase space, we
consider the attractors resulting from the 16 quadrants and
four initial states. We find 16 attractors for the attractor se-
quence in Eq.s8d. The positions of one of the attractors are
summarized in Table II, and the values ofAmstd for the his-
torical statesm=m*std, which are used to compute the vari-
ance of decisions in Eq.s10d are summarized in Table III.
Averaging over the period and over the attractors, the vari-
ance of decisions in Eq.s10d becomes

s2

N
=

N

1024
s14cR+7

2 + 41cR+5
2 + 42cR+3

2 + 15cR+1
2 + 2cR+7cR+5

− 2cR+7cR+3 + 2cR+5cR+3 − 2cR+5cR+1d. s27d

Since the attractor sequence in Eq.s9d is related to Eq.s8d by
conjugation symmetry, this expression is already the sample
average of the variance. Again, the theoretical values of the
first three points of each curve in Fig. 4 have an excellent
agreement with the simulation results, and deviate from the

FIG. 5. sad–sdd The four attractors form=1
and s=2 in the multinomial regime. The time
steps are relabeled witht=0 corresponding to the
state withm*std=0 andm*st+1d=1.
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r−1 scaling in the next regime. WhenR@1, cR+1<cR+3
<cR+5<cR+7<Î2/pR, s2/N approaches 7/32pr.

The variance of decisions for higher values ofm can be
obtained by exhaustive computer search starting from the 2D

quadrants of the phase space and theD initial states. Since
the number of cases grows rapidly withD, one may use a
Monte Carlo sampling of the initial conditions to determine
the variance.

Before we close this section, we remark that the periodic
average of the decisionsAmstd at the historical statesm
=m*std have a vanishing sample average, but the periodic
average does not necessarily vanish for individual samples.
For example, the attractorsad in Table I has a periodic aver-
age of kAmstdl=−scR+1+cR+3d /2 at the historical statesm
=m*std. The variance is often regarded as a measure of the
system efficiency, based on the observation that the average
decisions vanish at high values ofm f4,9,22g. However, this
is not the case for the low values ofm we are studying. In the
context of market modeling, a nonzero periodic average of
decisions indicates the existence of arbitrage opportunities,
and in the context of modeling multiagent control, it means
that there is an imbalance in the utilization of resources.

Hence the variance cannot be regarded as an intrinsic mea-
sure of global efficiency. Nevertheless, the phase space mo-
tion points in the direction of reducing the winning margin,
as seen in Eq.s14d, which traps the attractors around the
origin, as shown in Figs. 1 and 5. As a result, the average of
decisions is bounded by the step sizes at the attractor, so that
small variances also imply small averages, and the variance
can still be considered as a good approximate measure of
efficiency.

IV. THE SCALING REGIME

Whenr,1, the clusters of agents making identical deci-
sions effectively become continuously distributed in their
preference of strategies. Since the shift of preferences at the
attractor is much narrower than the spread-out preference
distribution, the size of the clusters switching strategies is
effectively independent of the detailed profile of the prefer-
ence distribution. For generic preference distributions, the
width scales asÎR, and hence the size of typical clusters
scales asR−1/2. This leads to the scaling of the variance
s2/N,r−1 f24g. Compared with the typical cluster size of
scaling asN in the multinomial regime, the typical cluster
size in the scaling regime only scales asÎN. Nevertheless, it
is sufficiently numerous that agent cooperation in this regime
can be described at the level of statistical distributions of
strategy preference, resulting in the scaling relation.

In the integral of Eq.s22d, significant contributions only
come fromu,1/ÎR or u−p,1/ÎR so that the factor cosRu
can be approximated by exps−Ru2/2d. This simplifies Eq.
s22d to

kDAmstdl = −Î 2

pR
sgnAmstd s28d

for m=m*std. Since the step sizes scale asR−1/2, they remain
self-averaging. Similarly,kDAmstdl=0 using Eq.s24d. The
two cases can be summarized as

TABLE II. An atractor form=2, s=2 in the multinomial regime
with the sequence in Eq.s8d.

t k0 k1 k2 k3 A0 A1 A2 A3

0 0 0 0 0 0−* 0± 0± 0±

1 1 0 0 0 cR+1 0−* 0± 0±

2 1 1 0 0 cR+3 cR+3 0± 0−*

3 1 1 0 1 cR+5 cR+5 0± cR+5
*

4 1 1 0 0 cR+3 cR+3 0−* 0±

5 1 1 1 0 cR+5 cR+5
* cR+5 0±

6 1 0 1 0 cR+3 0± cR+3
* 0±

7 1 0 0 0 cR+1
* 0± 0± 0±

TABLE I. The four attractors form=1, s=2 in the multinomial regime. In Tables I and II, the time steps
are relabeled witht=0 corresponding to the state withm*std=0 andm*st+1d=1, the superscripts ± of the
value 0 indicate the possible signs to orderN−1/2, andAmstd with asterisks correspond to the historical states,
which are used to compute the variance of decisions in Eq.s10d.

t k1std k0std A1std A0std k1std k0std A1std A0std
sad sbd

0 −1 −1 −cR+3 −cR+3
* 0 −1 0± −cR+1

*

1 −1 0 −cR+1
* 0+ 0 0 0−* 0+

2 0 0 0+* 0± 1 0 cR+1
* 0±

3 −1 0 −cR+1 0+* 0 0 0− 0+*

scd sdd

0 0 0 0± 0−* −1 0 −cR+1 0−*

1 0 1 0−* cR+1 −1 1 −cR+3
* cR+3

2 1 1 cR+3
* cR+3 0 1 0+* cR+1

3 0 1 0− cR+1
* −1 1 −cR+3 cR+3

*
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DAmstd = − dm,m* stdÎ 2

pR
sgnAmstd. s29d

This result shows that the preference distribution among
agents of a given pair is effectively a Gaussian with variance
R, so that the number of agents switching strategies at timet
scales as two times the height of the Gaussian distribution
stwo being the shift of preference per stepd, which isÎ2/pR.
Thus by spreading the preference distribution, diversity re-
duces the step size and hence maladaptation.

As a result of Eq.s29d, the motion in the phase space is
rectilinear, each step only making a move of fixed size along
the direction of the historical state. Consequently, each state
of the attractor is confined in aD-dimensional hypercube of
size Î2/pR, irrespective of the initial position of theAm

components. This confinement enables us to compute the
variance of the decisions. Without loss of generality, let us
relabel the time steps in the periodic attractor, witht=0 cor-
responding to the state withm*std=0 and m*st+1d=1. We
denote astm the step at which statem first appears in the
relabeled sequence.fFor example,t0=0, t1=1, t2=4, andt3
=2 for the attractor sequence in Eq.s8d.g

When statem first appears in the attractor on or aftert
=0, the winning state issstmd. Furthermore, since there is no
phase space motion along the nonhistorical directions,
Amstmd=Ams0d. Since the winning state is determined by the
minority decision, we haveAms0df2sstmd−1g,0. Similarly,
when statem appears in the attractor the second time, the
winning state is 1−sstmd, and Amstd=Ams0d+f2sstmd
−1gÎ2/pR. The winning condition imposes thatAmstdf1
−2sstmdg,0. Combining,

−Î 2

pR
, Ams0df2sstmd − 1g , 0. s30d

Suppose the game starts from the initial stateA0
m, which are

Gaussian variables with mean 0 and variance 1/N. They
change in steps of sizeÎ2/pR until they reach the attractor,
whose 2D historical states are then given by

Î 2

pR
fracSÎpR

2
A0

mD and

Î 2

pR
HfracSÎpR

2
A0

mD − 1J , s31d

where fracsxd represents the decimal part ofx. Using Eq.
s10d, this corresponds to a variance of decisions given by
s2/N= fspd /2pr, where

fsrd =K 1

D
o
m=0

D−1HFfracSÎpR

2
A0

mDG2

− fracSÎpR

2
A0

mD
+

1

2
J −H 1

D
o
m=0

D−1FfracSÎpR

2
A0

mD −
1

2
GJ2L . s32d

SinceA0
m are independent variables,fsrd is simplified to

fsrd = S1 −
1

D
DKFfracSÎpR

2
A0

mDG2L
+

1

d
KfracSÎpR

2
A0

mDL2

. s33d

SinceA0
m are Gaussian variables with mean 0 and variance

N−1, we have

KFfracSÎpR

2
A0

mDGnL =E
0

1

djF o
r=−`

`
e−sr + jd2/pr

Îp2r
Gjn.

s34d

Whenr!1, the integrals are dominated by peaks atj=0 and
1, yielding kfracsÎpR/2A0

mdl=kffracsÎpR/2A0
mdg2l=1/2. As

a result,fsrd=s1−1/2Dd /2. On the other hand, whenr@1,
the step sizes become much smaller than the variance ofA0

m,
so that fracsÎpR/2A0

md becomes a uniform distribution be-
tween 0 and 1, leading tokfracsÎpR/2A0

mdl=1/2 and
kffracsÎpR/2A0

mdg2l=1/3, resulting in s1−1/4Dd /3 for
r@1. Hence fsrd is a smooth function ofr varying, for
example, from 3/8 to 7/24 form=1. Thuss2/N depends on
r mainly through the step size factor 1/2pr, whereasfsrd
merely provides a higher order correction to the functional

TABLE III. The values ofAmstd for the historical statesm=m*std for the attractors withm=2, s=2 in the multinomial regime in Eq.s8d.
The time steps are relabeled witht=0 corresponding to the state withm*std=0 andm*st+1d=1; the superscripts ± of the value 0 indicate the
signs to orderN−1/2.

Attractor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m*s0d=0 0− 0− 0− 0− 0− 0− 0− 0− −cR+1 −cR+3 −cR+3 −cR+5 −cR+3 −cR+5 −cR+5 −cR+7

m*s1d=1 0− 0− 0− 0− −cR+3 −cR+5 −cR+5 −cR+7 0− 0− 0− 0− −cR+1 −cR+3 −cR+3 −cR+5

m*s2d=3 0− −cR+5 0− −cR+7 0− −cR+3 0− −cR+5 0− −cR+3 0− −cR=5 0− −cR+1 0− −cR+3

m*s3d=3 cR+5 0+ cR+7 0+ cR+3 0+ cR+5 0+ cR+3 0+ cR+5 0+ cR+1 0+ cR+3 0+

m*s4d=2 0− 0− −cR+5 −cR+7 0− 0− −cR+3 −cR+5 0− 0− −cR+3 −cR+5 0− 0− −cR+1 −cR+3

m*s5d=1 cR+5 cR+7 cR+3 cR+5 0+ 0+ 0+ 0+ cR+3 cR+5 cR+1 cR+3 0+ 0+ 0+ 0+

m*s6d=2 cR+3 cR+5 0+ 0+ cR+5 cR+7 0+ 0+ cR+1 cR+3 0+ 0+ cR+3 cR+5 0+ 0+

m*s7d=0 cR+1 cR+3 cR+3 cR+5 cR+3 cR+5 cR+5 cR+7 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+
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dependence. This accounts for the scaling regime in Figs. 3
and 4. Furthermore, we note thatfsrd rapidly approaches 1/3
when m increases. Hence for general values ofD , s2/N
→1/6pr, provided thatm is not too large. This leads to the
data collapse of the variance form=1 andm=2 in the inset
of Fig. 4.

Analogous to the multinomial regime, the hypercube pic-
ture implies that both the standard deviation and the average
of Am are bounded by the step size. Hence the variance is a
sufficient measure of system efficiency.

This result can be compared with that inf13g, where it
was found that the variance scales asa1/2 in the presence of
random initial conditions. A similara1/2 scaling was also
reported for the batch MGf15,8g. Their results are different
from ours in that the variance is effectively independent ofD
swherea=D /Nd. However, the simulation data in Fig. 2 in-
dicate that the difference may not be in conflict with each
other. For a sufficiently large value ofr, sayr=16, the data
in the regime immediately belowac appears to be consistent
with a power-law dependence with an exponent approaching
0.5, as predicted byf13,15g. Whena reaches lower values,
the variance flattens out, showing that our results are appli-
cable to the regime ofm being not too large.

V. THE KINETIC SAMPLING REGIME

When r,N, the average step sizes scale asN−1 and are
no longer self-averaging. Rather, Eq.s14d shows that the size
of a step along the direction of historical states at timet is
2/N times the number of agents who switch strategies at
time t, which is Poisson distributed with a meanD /2, im-
plied by Eq.s28d. HereD is the average step size given by
Eq. s11d. However, since the attractor is formed by steps
which reverse the sign of Am, the average step size in the
attractor islarger than that in the transient state, because a
long jump is the vicinity of the attractor is more likely to get
trapped.

To consider the origin of this effect, we focus in Fig. 6 on
how the average number of agents, who hold the identity
strategy withsa

m=m and its complementary strategysb
m=1

−m, depends on the preferencev+Va−Vb, when the system
reaches the steady state in games withm=1. Since the pref-
erences are time dependent, we sample their frequencies at a
fixed time, say, immediately beforet=0 in the inset of Fig. 6.
One would expect that the bias distribution is reproduced.
However, we find that a sharp peak exists atv+Va−Vb
=−1. This value of the preference corresponds to that of the
attractor step fromt=3 to 0, when at state 0, decision 0 wins
and decision 1 loses, andv+Va−Vb changes from −1 to +1.
The peak at the attractor step shows that its average step is
self-organized to be larger than those of the transient steps
described by the background distribution. Similarly form
=2, Fig. 7 shows the average number of agents who hold the
XOR strategyja

m and its complementjb
m=−ja

m, as shown in
the left inset of the figure, when the attractor sequence is Eq.
s9d. At the attractor step immediately beforet=4 in the inset
of Fig. 7, the state is 1. Decision 1 wins and decision 0 loses,
changing the preferencev+Va−Vb from −1 to +1, and
hence contributing to the sharp peak atv+Va−Vb=−1.

This effect that favors the cooperation of larger clusters of
agents is referred to as thekinetic samplingeffect. To de-
scribe this effect, we consider the probability ofPattsDAd of
step sizesDA in the attractor. For convenience, we only con-
siderDAm.0 for all m. Assuming that all states of the phase
space are equally likely to be accessed by the initial condi-
tion, we have

PattsDAd = o
A

PattsDA,Ad, s35d

wherePattsDA ,Ad is the probability of finding the positionA
with displacementDA in the attractor. Consider the example

FIG. 6. Experimental evidence of the kinetic sampling effect for
m=1: steady-state preference distribution of the average number of
agents holding the identity strategy and its complement, immedi-
ately before t=0, and r=N=1023 and averaged over 100 000
samples. Inset: The labeling of the time steps in the attractor.

FIG. 7. Experimental evidence of the kinetic sampling effect for
m=2: steady-state preference distribution of the average number of
agents holding the XOR strategyja

m and its complementjb
m sleft

insetd, immediately beforet=4, andr=N=511 and averaged over
50 000 samples. Right inset: The labeling of the time steps in the
attractor.
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of m=1, where there is only one step along each axisAm.
The sign reversal condition implies that

PattsDA,Ad = PPoisDAdp
m

Q„− AmsAm + DAmd…, s36d

where PPoisDAd is the Poisson distribution of step sizes,
yielding

PattsDAd ~ PPoisDAdp
m

DAm. s37d

We note that the extra factors ofDAm favor large step sizes.
Thus the attractor averagesksDA±d2latt, which are required
for computing the variance of decisions, are given by

ksDA±d2latt =
ksDA±d2DA+DA−lPoi

kDA+DA−lPoi
. s38d

Furthermore, correlation effects come into action when the
step sizes become non-self-averaging. There are agents who
contribute to bothDA+ andDA−, giving rise to their correla-
tions. Thus, the variance of decisions is higher when corre-
lation effects are considered. In Eq.s14d, the strategies of the
agents contributing toDA+ and DA− satisfy ja

+−jb
+= ±2 and

ja
−−jb

−= 72, respectively. Among the agents contributing to
DA+, the extra requirement ofja

−−jb
−= 72 implies that an

average of 1/4 of them also contribute toDA−. Hence, the
number of agents contributing to both steps is a Poisson
variable with meanD /8. Similarly, the number of agents
exclusive to the individual steps are Poisson variables with
means 3D /8. Algebraically, Eq.s14d can be decomposed as

DA± =
2

N
o
a,b

o
r=±1

Sabs− r − Va + Vbddsja
± − jb

± + 2rddsja
7 − jb

7

− 2rd +
2

N
o
a,b

o
r=±1

Sabs− r − Va + Vbddsja
± − jb

± + 2rd

3fdsja
7 − jb

7d + dsja
7 − jb

7 + 2rdg. s39d

Respectively, the first and second terms are equal to 2/N
times the number of agents, common to both stepsDA± and
exclusive to the individual steps, with meansD /8 and 3D /8,
as can be verified by a derivation similar to that of Eq.s22d
from Eq.s14d. Hence the denominator of Eq.s38d is given by

kDA+DA−lPoi =
4

N2 o
a0,a+,a−

e−D/8

a0!
SD

8
Da0

3
e−3D/8

a+!
S3D

8
Da+e−3D/8

a−!
S3D

8
Da−

sa0 + a+d

3sa0 + a−d. s40d

Expressing the moments of Poisson variables in terms of
their means, we arrive at

kDA+DA−lPoi =
4

N2F16SD

8
D2

+
D

8
G . s41d

Similarly, the numerator of Eq.s38d is given by

ksDA±d2DA+DA−lPoi =
16

N4F256SD

8
D4

+ 240SD

8
D3

+ 40SD

8
D2

+
D

8
G . s42d

Together we obtain

ksDA±d2latt =
2D3 + 15D2 + 20D + 4

N2s2D + 1d
. s43d

The possible attractor states are given byAm=mm /N and
mm /N−DAm, where mm=1, 3, … , NDAm−1. This yields a
variance of

s2

N
=

N

4KH 1

D
o
m=0

D−1FSmm

N
D2

− DAmSmm

N
D +

1

2
sDAmd2G

− F 1

D
o
m=0

D−1 Smm

N
−

1

2
DAmDG2JL . s44d

Averaging over the attractor states, we find

s2

N
=

7ksNDA+d2latt + 7ksNDA−d2latt − 8

192N
, s45d

which gives, on combining with Eq.s43d,

s2

N
=

14D3 + 105D2 + 132D + 24

96Ns2D + 1d
. s46d

When the diversity is low,D@1, and Eq.s46d reduces to
s2/N;7/48pr, agreeing with the scaling result of the pre-
vious section. Whenr,N, Eq. s46d has excellent agreement
with simulation results, which significantly deviate above the
scaling relation, as shown in Fig. 3.

Whenr@N, Eq. s46d predicts thats2/N should approach
1/4N. This can be explained as follows. Analysis shows that
only those agents holding the identity strategy and its
complement can complete both hops along theA± axes after
they have adjusted their preferences tov+Va−Vb= ±1.
Since there are fewer and fewer fickle agents in the limitr
@N, one would expect that a single agent of this type would
dominate the game dynamics, ands2/N would approach
1/4N.

However, as shown in Fig. 3, the simulation data ap-
proach the limit 0.43/N when r@N, significantly higher
than 0.25/N. This discrepancy requires consideration of the
waiting effect, which has been sketched inf17g, and will be
explained in detail elsewhere.

Next, we turn to the kinetic sampling effects form=2. As
shown in Fig. 1sbd, the situation is more complicated than
that of m=1 since there are two steps moving along the
direction A1 and A2. Consider the attractor sequence in Eq.
s8d. The stepDAs1d can initiate fromA1=m1/N, with m1

=−1, … , −NDAs1d+1, where for convenience the state la-
bels of the step sizes at timet are implicitly taken to be the
historical statesm*std. Similarly, the stepDAs5d can initiate
from A1=m5/N, with m5=1, … , NDAs5d−1. However,
since the two steps are linked by steps along the directionA2,
their positions are no longer independent. Taking into con-
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sideration the many possibilities of their relative displace-
ments makes the problem intractable. As shown in Fig. 8, we
consider only the most probable case that the two steps are

symmetrically positioned, that is, their midpoints have the
sameA1 coordinate. In this case, the possible initial positions
of the steps areAs1d=m1/N, with m1=−1, … , −fNDAs1d
+NDAs5dg /2+1, and As5d=m5/N, with m5=m1+fNDAs1d
+NDAs5dg /2. Thus, the number of possible states along the
direction A1 is fNDAs1d+NDAs5dg /4. Considering the mo-
tion in the four directions, the total number of possible states
is fNDAs0d /2ghfNDAs1d+NDAs5dg /4jfNDAs2d /2ghfNDAs4d
+NDAs6dg /4j.

Extending the derivation of Eq.s45d to the case ofm=2,
we have

s2

N
=

N

256
H5kDAs0d2latt + 5KfDAs1d + DAs5dg2

4
L

att

+ 5kDAs2d2latt + 5KfDAs4d + DAs6dg2

4
L

att
− 16J ,

s47d

where the attractor averages are defined as the Poisson aver-
ages weighted by kinetic sampling. For example,

kDAs0d2latt =
kDAs0dfDAs1d + DAs5dgDAs2dfDAs4d + DAs6dgDAs0d2lPoi

kDAs0dfDAs1d + DAs5dgDAs2dfDAs4d + DAs6dglPoi
. s48d

This requires us to compute Poisson averages such as
kDAst1d¯DAstkdlPoi. The following identity for Poisson av-
erages is useful. Consider a universal set ofM elements, and
the sizes of the setsB1¯Bk and their intersections are Pois-
son distributed. Then the expectation of the product
uB1u¯ uBku is given by

kuB1u ¯ uBkul = p
r=1

k

kuBrul + o
r,s

kuBr ù Bsul p
uÞrs

kuBuul + ¯

+KUù
r=1

k

BrUL . s49d

This identity can be proved by writing

uB1u ¯ uBku = o
i1=1

M

¯ o
ik=1

M

Qsi1 P B1d ¯ Qsik P Bkd s50d

whereQsi r PBrd if i r PBr and 0 otherwise. In the limit ofM
approaching infinity, the case that alli r are distinct yields the
expectation value in the first term of Eq.s49d, the case that
i r = is corresponds to the second term, and the case that alli r
are identical corresponds to the last term, and so on.

Therefore, we can write

kDAs1d ¯ DAskdl

= S 2

N
DkHp

r=1

k

br + o
r,s

brs p
uÞrs

ba + ¯ + b1¯kJ s51d

wherebr1¯ri
is the average number of agents simultaneously

contributing to the stepsDAsr1d¯DAsr id.
Consider the attractor sequence in Eq.s8d. Tracing the

time evolution of the cumulative payoffs, the step sizes att
=2 and 6, for example, are given by

DAs2d =
2

N
o
a,b

o
r=±1

Sab„− r − Vas2d + Vbs2d…dsja
3 − jb

3 − 2rd,

s52d

DAs6d =
2

N
o
a,b

o
r8=±1

Sab„− r8 − Vas2d + Vbs2d

+ ja
1 − jb

1 − ja
2 + jb

2
…dsja

2 − jb
2 + 2r8d. s53d

Following the analysis of Eq.s39d, we findb2=b6=D /2. To
find b26, we note that the agents shared by the two steps
satisfy eitherr =r8 and ja

1−jb
1=ja

2−jb
2=−2r, or r =−r8 and

ja
1−jb

1=0, ja
2−jb

2=2r. This leads to

FIG. 8. The relative positions of the stepsDAs1d andDAs5d for
the caseDAs5d.DAs1d. Here they are shown symmetrically
positioned.
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b26 = o
a,b

o
r=±1

kSab„− r − Vas2d + Vbs2d…ldsja
3 − jb

3 − 2rd

3 hdsja
1 − jb

1 + 2rddsja
2 − jb

2 + 2rd + dsja
1 − jb

1d

3dsja
2 − jb

2 − 2rdj. s54d

The two terms in this expression consist of the contributions
to DAs2d, with the extra restrictions ofja

1−jb
1=ja

2−jb
2=−2r,

or ja
1−jb

1=0 and ja
2−jb

2=2r, respectively. Sinceja
m−jb

m

= ±2r and 0 with probabilities 1/4 and 1/2 respectively, we
getb26=3D /32. Other parameters are listed in Table IV. This
enables us to find

kDAs0dfDAs1d + DAs5dgfDAs4d + DAs6dgDAs2dlPoi

=
1

8N4S32D4 + 84D3 +
169

4
D2 + 2DD . s55d

Other expressions appearing in Eq.s47d can be found simi-
larly. The final result is

s2

N
=

160D5 + 1680D4 + 4772D3 +
272 061

64
D2 +

7583

8
D + 17

64NS32D3 + 84D2 +
169

4
D + 2D .

s56d

Since the attractor sequence in Eq.s9d yields the same result,
Eq. s56d is the sample average of the variance. When the
diversity is low, D@1, and Eq. s56d reduces tos2/N
=5/32pr, agreeing with the scaling result of the previous
section. Whenr,N, Eq. s56d shows that the introduction of
kinetic sampling significantly improves the theoretical agree-
ment with simulation results, as shown in Fig. 4. When
r@N, Eq. s56d implies thats2/N approaches 17/128N. This
result is not valid since it is below the lowest possible result
of 1/4N when each step is excuted by the strategy switching
of only one agent. The discrepancy can be traced to the ap-
proximation that the average number of states along the di-
rection A1 is fNDAs1d+NDs5dg /2, which is not precise for
small steps. For example, it can take half integer values. We
will not pursue this issue further since, in any case, waiting

effects have to be taken into account in analyzing the case
r@N.

In summary, we have explained the reduction of variance
by the reduction of the fraction of fickle agents when diver-
sity increases. The theoretical analysis from Sec. III to Sec.
V spans the three regimes of smallR, r−1 scaling, and ki-
netic sampling, yielding excellent argreement with simula-
tions over seven decades.

It is natural to consider whether the results presented here
can be generalized to the case of theexogenousMG, in
which the informationmstd is randomly and independently
drawn at each time stept from a distributionrm=1/D f6g.
This is different from the presentendogenousversion of the
MG, in which the information is determined by the sequence
of the winning bits in the game history. The similarities and
differences between the behavior of those two versions have
been a topic of interest in the literaturef6,18–20,25–27g.
Here we compare their behavior in games of smallm using
the phase space we introduced.

In the scaling regime, the picture that the states of the
game are hopping between hypercubes in the phase space
remains valid, as shown in Fig. 9 form=1. At the steady

FIG. 9. An attractor of the exogenous minority game for
m=1.

FIG. 10. The dependence of the fraction of fickle agents on the
randomnessR at m=1 ands=2. Notations are the same as those of
Fig. 3.

TABLE IV. Values ofbt1¯tr
for the attractor sequence in Eq.s8d.

The steps att=3 and 4 are identical; so are the steps att=6 and 7.
Other unlisted parameters are zero.

D /2 b0, b1, b2, b4, b5, b6

D /4 b15, b46

D /8 b01, b06, b12, b14, b16, b24, b45, b56

3D /32 b02, b04, b05, b25, b26

D /16 b015, b046, b125, b246

D /32 b012, b014, b016, b056, b124, b126, b245

3D /128 b024, b026

D /64 b025

D /128 b0124, b0126

D /64 b0125, b0246
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state, the attractor consists of hoppings along all edges of a
hypercube, in contrast to the endogenous case, in which only
a fraction of hypercube vertices belong to the attractor. The
behavior in the scaling regime depends on the scaling of the
step sizes with diversity, rather than the actual sequence of
the steps. Consequently, the behavior is the same as the en-
dogenous game. In the kinetic sampling regime, the physical
picture that larger steps are more likely to be trapped remains
valid, and the behavior remains qualitatively similar to that
in the endogenous case.

VI. THE FRACTION OF FICKLE AGENTS

This physical picture of the diversity effects is further
illustrated by considering the fractionf fi of fickle agents
when the game has reached the steady state. They hold strat-
egy pairs whose preferences are distributed near zero, and
change sign during the attractor dynamics. As confirmed in
Figs. 10 and 11, three regimes of behavior exist.

In the multinomial regime, we can make use of the ex-
plicit knowledge about the attractor sequence and the evolu-

tion of the payoffs in the attractor dynamics. Consider the
example ofm=1. We count the type of fickle agents labeled
by the strategy pairsa,b and biasv for all t, with prefer-
ences

v + Vastd − Vbstd = ± 1 and ja
m − jb

m = 7 2 sgnAmstd,

s57d

wherem=m*std. Equivalently, we have

v = − Vastd + Vbstd −
1

2
f2sstd − 1gsja

m* std − jb
m* stdd, s58d

whereVastd is updated by

Vast + 1d = Vastd + ja
m* stdf2sstd − 1g. s59d

This enables us to count the types directly from the knowl-
edge of the attractor sequences, such as Eqs.s7d and s8d,
without having to know the step sizes. Results form=1 and
m=2 are listed in Tables V and VI, respectively. Note that
the values in the tables depend on the convention of ordering
the strategiesa,b, and here the convention of Eq.s2d is
adopted. Other conventions may classify the types with bias
v as −v, or vice versa. Since the average number of fickle
agents of each type is given by Eq.s3d, f fi can then be ob-
tained by summing up the contributions from each type.

Consider the example ofm=1. Table V shows that there
are seven types of fickle agents for each attractor shown in
Fig. 5. Averaging over initial states, we find that an average
of 25/4 types consist of agents with biasesv= ±1, and an

FIG. 11. The dependence of the fraction of fickle agents on the
randomnessR at m=2 ands=2. Notations are the same as those of
Fig. 3.

TABLE V. The number of types of fickle agents for the attrac-
tors sad–sdd in Fig. 5.

v sad sbd scd sdd Total

−3 1 0 0 0 1

−1 5 4 0 3 12

1 1 3 6 3 13

3 0 0 1 1 2

Total 7 7 7 7

TABLE VI. The number of types of fickle agents for the 16 attractors in Table III atm=2.

Attractor

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

−7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

−5 0 0 0 0 0 2 0 3 0 1 1 4 0 6 4 9 30

−3 0 3 5 10 8 16 16 23 7 20 22 28 24 33 33 38 286

−1 19 42 42 54 52 59 69 66 76 73 76 75 91 84 94 85 1057

1 120 87 92 71 93 70 66 59 90 72 72 60 75 55 54 49 1185

3 48 50 44 46 37 37 36 33 21 25 20 24 4 15 9 11 460

5 7 11 10 12 4 9 7 9 0 3 3 3 0 1 0 1 80

7 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 5

Total 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194
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average of 3/4 types havev= ±3, this result being indepen-
dent of the ordering ofa,b. Since the average number of
agents holding strategy paira,b is N/8, we have

f fi =
25

321 R

R− 1

2
2 1

2R +
3

321 R

R− 3

2
2 1

2R . s60d

For m=2, the number of types of fickle agents for the 16
attractors in Table III are listed in Table VI. There are 194
types of fickle agents for each attractor. The fraction of fickle
agents is given by

f fi =
1121

10241 R

R− 1

2
2 1

2R +
373

10241 R

R− 3

2
2 1

2R

+
55

10241 R

R− 5

2
2 1

2R +
3

10241 R

R− 7

2
2 1

2R . s61d

In the scaling regimer,1, we consider the limit ofR,N in
Eq. s60d, and obtain form=1,

f fi =
7

8
Î 2

pR
. s62d

Similarly, from Eq.s61d, we have form=2,

f fi =
97

64
Î 2

pR
. s63d

In the kinetic sampling regime, the fraction of fickle
agents form=1 is obtained by replacingsDA±d2 in the nu-
merator of Eq.s38d by sa0+a++a−d /N, following the nota-
tion used in Eq.s40d. The result is

f fi =
14D2 + 39D + 8

8Ns2D + 1d
. s64d

In the limit of low diversity,D@1 and Eq.s64d reduces to
Eq. s62d. In the limit of high diversity,D!1 and f fi ap-
proaches 1/N, implying that a single agent would dominate
the game dynamics. However, since waiting effects are ne-
glected, this result is considerably lower than the simulation
results.

For m=2, the fraction of fickle agents is given by the size
of the union set of fickle agents at all steps,

f fi =
1

NKo
r

br − o
r,s

brs + o
r,s,u

brsu¯L
att

s65d

where

kbr1¯ri
latt =

kDAs0dfDAs1d + DAs5dgDAs2dfDAs4d + DAs6dgbr1¯ri
lPoi

kDAs0dfDAs1d + DAs5dgDAs2dfDAs4d + DAs6dglPoi
. s66d

The result is

f fi =

1552D4 + 8170D3 +
80 905

8
D2 + 2801D + 64

32NS32D3 + 84D2 +
169

4
D + 2D . s67d

In the limit of low diversity,D@1 and Eq.s67d reduces to
Eq. s63d. In the limit of high diversity,f fi approaches 1/N.
However, by tracing the types of fickle agents switching
strategies at each time step, one cannot findany single type
of agents that can contribute to the dynamics ofall steps. In
fact, the minimum number of agents that can complement
each other to complete the dynamics is two. For example,
one agent can complete the steps att=0,1,2,3,4, while the
other one can complete the stepst=5,6,7. Hence the
asymptotic limit of f fi =1/N is not valid. The source of the
discrepancy is the same as that for the invalid result of the
asymptotic variance of decisions explained in the previous
section.

As shown in Figs. 10 and 11, the theoretical predictions
are confirmed by simulations, except in the regime of ex-

tremely high diversity, where waiting effects have to be
taken into accountf17g.

VII. CONVERGENCE TIME

Many properties of the system dependent on the transient
dynamics also depend on its diversity. For example, since
diversity reduces the fraction of agents switching strategies
at each time step, it also slows down the convergence to the
steady state. Hence the convergence time increases with di-
versity.

We consider the example ofm=1. The dynamics of the
game proceeds in the direction which reduces the variance
f6g. In the multinomial regime, the initial position ofAm in
the phase space lies in the attractor. Convergence to the
steady state is almost instant. Starting from the initial state 0,
the convergence time is 2,0,0,1 in the four corresponding
quadrants of the phase space in Fig. 1. For the initial state 1,
the game has the same set of convergence times, except that
the order described is permuted. Hence, the convergence
time is 2, 1, and 0 with probabilities 1/4, 1/4, and 1/2,
respectively, yielding the average convergence time of 3/4.
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In the scaling regime, it is convenient to make use of the
rectilinear nature of the motion in the phase space. We divide
the phase space into hypercubes with dimensionsÎ2/pR.
Starting from the initial state 0, the convergence paths are
shown in Fig. 12. The convergence timet of an initial state
from inside a hypercube is the number of steps it hops be-
tween the hypercubes on its way to the attractor, as shown in
Fig. 13.

In general, the convergence time is given by the following
cases: sad 3x+y+2 for xù0 and yù−x−1, where x
= bÎpR/2A1s0dc and y= bÎpR/2A0s0dc, with bzc being the in-
teger part ofz; sbd −x−3y−4 for yø−2 andyø−x−2; scd
−x+y−1 for xø−2 andyù−1; sdd y for x=−1 andyù0; sed
0 for x=y=−1.

The average convergence time is then obtained by averg-
ing over the Gaussian distribution of the initialAms0d with
mean 0 and variance 1/N. Whenr is small, the initial posi-
tions are mainly distributed around the origin, reducing the
convergence time to that of the multinomial regime. Whenr
is large, the initial positions are broadly distributed among
many hypercubes in the phase space, and one can take a
continuum approximation as shown in the inset of Fig. 13.
Thus, the average convergence time is given by

t =ÎpR

2NHE0

`

DxE
−x

`

Dys3x + yd +E
−`

0

Dy

3E
−`

−y

Dxs− x − 3yd +E
−`

0

DxE
0

`

Dys− x + ydJ ,

s68d

whereDx;dx e−x2/2/Î2p is the Gaussian measure. The re-
sult is

t = s2 +Î2dÎr. s69d

As shown in Fig. 14, there is an excellent agreement between
theory and simulations.

The r1/2 dependence of the convergence time can be in-
terpreted as follows. In the scaling regime, since the step size
in the phase space scales as 1/ÎR and the initial position of
Am has components scaling as 1/ÎN, the convergence time

FIG. 12. The convergence paths starting from the initial state 0
in the four quadrants of the phase space form=1.

FIG. 13. The dependence of
the convergence time on the initial
position in the phase space form
=1, starting from the initial state
0. The dimensions of the hyper-
cubes areÎ2/pR. Inset: The three
regimes of convergence time in
the continuum limit.

FIG. 14. The dependence of the average convergence time on
the diversity atm=1.
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should scale ass1/ÎNd / s1/ÎRd,r1/2. This scaling relation
remains valid in the kinetic sampling regime wherer,N,
since kinetic sampling affects only the description of the at-
tractor, rather than the transient behavior.

VIII. WEALTH SPREAD

Another system property dependent on the transient is the
distribution of wealth or resources, especially those among
the frozen agentssthat is, agents who do not switch their
strategies at the steady stated. Since the system dynamics
reaches a periodic attractor, they have constant average
wealth at the steady state. Hence any spread in their wealth
distribution is a consequence of the transient dynamics.

The simiplify the analysis, we only consider the agents
who hold identical strategy pairs. Since they never switch
strategies, and both outputs 1 and 0 have equal occurence at
the attractor, their wealth averaged over a period becomes a
constant, and their wealth is equal to the cumulative payoff
of the identical strategies they hold.

In the multinomial regime, the wealth of agents holding
identical strategiesa is given by Eq.s16d, wherekmstd are
listed in Table I. Form=1, the periodic averagekValt of the
cumulative payoffs of strategies and their varianceskkValt

2la

are listed in Table VII. Thus, the wealth spreadW is the
varianceŠkValt

2
‹a of kValt, averaged over the four strategies

and the four attractors, and is equal to 5/8.
In the scaling regime, the initial position may be located

away from the origin of the phase space. Using the hyper-
cube picture of the transient motion, we can work out the
cumulative payoffs of the strategies by considering their
changes when their initial position shift to successive neigh-
boring hypercubes. The distribution of wealth variance is
shown in Fig. 15. In general, ifx= bÎpR/2A1s0dc and y
= bÎpR/2A0s0dc, then the average wealth of the four strate-
gies in Table VII isx+y+1, −x+y−1/2, x−y+1/2, and −x
−y−1, respectively. This leads to a wealth spread ofx2+y2

+3x/2+y/2+5/8.
The value ofW is then obtained by averaging the wealth

spread over the Gaussian distribution of the initial positions
in the phase space, each componentAms0d with mean 0 and
variance 1/N. When r is small, the initial positions are
mainly distributed around the origin, reducing the wealth
spreadW to the value at the multinomial regime. Whenr is
large, the initial positions are broadly distributed among
many hypercubes in the phase space. Applying the con-
tinuum approximation,

W=
pR

2N
E DxE Dysx2 + y2d = pr. s70d

The same scaling relation applies to the kinetic sampling
regime. As shown in Fig. 16, the agreement between theory
and simulations is excellent. Note that the behavior closely
resembles that of the convergence time in Fig. 14, showing
that it is a transient behavior.

IX. DISCUSSION

We have studied the effects of diversity in the initial pref-
erence of strategies on a game with adaptive agents compet-
ing selfishly for finite resources. Introducing diversity is use-
ful both in modeling agent behavior in economic markets,
and as a means to improve distributed control. We find that it
leads to the emergence of a high system efficiency. We have
made use of the small memory sizesm to visualize the mo-

TABLE VII. The varianceŠkVlt
2
‹a of the periodic average of

wealth of the four strategies, for the four attractors ofm=1.

ja
1 ja

0 sad sbd scd sdd

kV0lt −1 −1 1 0 −1 0

kV1lt 1 −1 −1/2 1/2 −1/2 −3/2

kV2lt −1 1 1/2 −1/2 1/2 3/2

kV3lt 1 1 −1 0 1 0

ŠkValt
2
‹a 5/8 1/8 5/8 9/8

FIG. 15. The dependence of the variance of wealth among the
agents holding identical strategies on the initial position in the
phase space form=1. The dimensions of the hypercubes are
Î2/pR.

FIG. 16. The dependence of the variance of wealth on the di-
versity among the agents holding identical strategies form=1.
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tion in the phase space. Scaling of step sizes accounts for the
dependence of the efficiency on the diversity in the scaling
regime sr,1d, while kinetic sampling effects have to be
considered at higher diversity, yielding theoretical predic-
tions with excellent agreement with simulations up tor,N.
However, when diversity increases further, waiting effects
have to be consideredf17g and will be discussed in detail
elsewhere. The variance of decisions decreases with increas-
ing diversity, showing that the maladaptive behavior is re-
duced. On the other hand, the convergence time and the
wealth spread increases with diversity.

While the present results apply mostly to the cases of
small m, qualitative predictions can be made about higher
values ofm. An extension of Eq.s23d shows that whena
increases, the step size becomes smaller and smaller in the
asymptotic limit. There is a critical slowing down since the
convergence time diverges atac=p−1=0.3183f17g. Whena
exceedsac, the step size vanishes before the system reaches
the attractor near the origin, so that the state of the system is
trapped at locations with at least some components being
nonzero. The interpretation is that whena is large, the dis-
tribution of strategies becomes so sparse that motions in the
phase space cannot be achieved by the switching of strate-
gies. This agrees with the picture of a phase transition from
the symmetric to asymmetric phase whena increasesf22g. It
is interesting to note that the value ofac is close to the value
of 0.3374 obtained by the continuum approximationf6,28g
or batch updatef16g using linear payoff functions.

Another extension to generalm applies to the symmetric
phase of the exogenous game. In this case the attractor can
be approximated by a hyperpolygon enclosing the origin of
the phase space. Using a generating function approach, we
have computed the variance of decisions, taking into account
the scaling of step sizes and kinetic sampling; the analysis
will be presented elsewhere. The results agree qualitatively
with simulations of both the exogenous and endogenous
games, except for values ofa close toac. In fact, whena
increases, there is an increasing fraction of samples in which
the attractors are more complex than hyperpolygons. For ex-
ample, in the endogenous case, there is an increasing fraction
of attractors whose periods are no longer 2D f29g. Instead,
their periods become multiples of the fundamental period
2D. It is remarkable that the population variance is not seri-
ously affected by the structural change of the attractor, prob-
ably because the dynamical description of such long-period
attractors have strong overlaps with those of several distinct
attractors of period 2D.

In addition to step payoffs, the case of linear payoffs is
equally interesting. In fact, the latter case has also been con-
sidered recently, and the variance of decisions is also found
to decrease with diversityf30g. There are significant differ-
ences between the two cases, though, indicating that agents
striving to maximize different payoffs cause the system to
self-organize in different fashions. The details will be ex-
plained elsewhere.

From the viewpoint of game theory, it is natural to con-
sider whether the introduction of diversity assists the game to
reach a Nash equilibrium, in contrast to the case of the ho-
mogeneous initial condition where maladaptation is preva-
lent. It has been verified that Nash equilibria consist of pure

strategiesf6g. Hence all frozen agents have no incentives to
switch their strategies. In fact, since the dynamics in the
attractor is periodic for smallm, with states ±1 appearing
once each in response to each historical string, the payoffs of
all strategies become zero when averaged over a period.
Thus, the Nash equilibrium is approached in the sense that
the fraction of fickle agents decreases with increasing diver-
sity. In the limit of r@N, it is probable that only one fickle
agent switches strategy at each step in the attractor, as pre-
dicted by Eq.s64d for the casem=1. In this case, agents who
switch their decisions cannot increase their payoffs, since on
switching, the minority ones would become losers, and the
majority ones would change the minority side to majority
and lose.sThough the fickle agents are not playing pure strat-
egies, this argument implies that their payoffs are the same as
if they are doing so.d Then a Nash equilibrium is reached
exactly. However, as mentioned previously, waiting effects
become important in the extremely diverse limit, and there
are cases where more than one fickle agent contributes to a
single step in the attractor dynamics, and Nash equilibrium
cannot be reached.

The combination of scaling and kinetic sampling in ac-
counting for the steady-state properties of the system illus-
trates the importance of dynamical considerations in describ-
ing the system behavior, at least for small values ofm. We
anticipate that these dynamical effects will play a crucial role
in explaining the system behavior in the entire symmetric
phase, since whena increases, the state motion in a high
dimensional phase space can easily shift the tail of the cu-
mulative payoff distributions to the verge of strategy switch-
ing, leading to the sparseness condition where kinetic sam-
pling effects are relevant. Due to their generic nature
inherent in multiagent systems with dynamical attractors
formed by the collective actions of many adaptive agents, we
expect that these effects are relevant to minority games with
different payoff functions and updating rules, as well as other
multiagent systems with adaptive agents competing for lim-
ited resources.

The sensitivity of the steady state to the initial conditions
has implications for adaptation and learning in games. First,
when the MG is used as a model of financial markets, it
shows that the maladaptive behavior is, to a large extent, an
artifact of the homogeneous initial condition. In practice,
when agents enter the market with diverse views on the val-
ues of the strategies, the corresponding initial condition
should be randomized, and the market efficiency is better
than previously believed. Second, when the MG is used as a
model of distributed load balancing, the present study illus-
trates the importance of adopting diverse initial conditions in
order to attain the optimal system efficiency. The effect is
reminiscent of the dynamics of learning in neural networks,
in which case an excessive learning rate might hinder the
convergence to optimumf31g.
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