PHYSICAL REVIEW E 71, 066103(2005

Effects of diversity on multiagent systems: Minority games
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We consider a version of large population games whose agents compete for resources using strategies with
adaptable preferences. The games can be used to model economic markets, ecosystems, or distributed control.
Diversity of initial preferences of strategies is introduced by randomly assigning biases to the strategies of
different agents. We find that diversity among the agents reduces their maladaptive behavior. We find interest-
ing scaling relations with diversity for the variance and other parameters such as the convergence time, the
fraction of fickle agents, and the variance of wealth, illustrating their dynamical origin. When diversity in-
creases, the scaling dynamics is modified by kinetic sampling and waiting effects. Analyses yield excellent
agreement with simulations.
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[. INTRODUCTION control in multiagent systems, identical preferences of strat-
egies of the agents lead maladaptivebehavior; this refers

agents, each making independent decisions to compete f bursts of the population’s decisions due to the agents’

limited resources, but globally exhibit coordinated behavioP'émature rush to certain sta{@s10]. As a result, the popu-
through their mutual adaptatida—4]. Examples include the lation difference between the majority and minority groups is

formation of ecological patterns due to the competition oflarge. For economic markets, this corresponds to large price

predators hunting for food, the price adjustment due to thdluctuations; for distributed control, it corresponds to an un-
' ven resource allocation; both imply low system efficiency.

competition of buyers or sellers in economic markets, an . . X )
the load adjustment due to the competition of distribute enc?%maladaptatmn hinders the attainment of optimal sys-
em efficiency.

controllers of packet flows in computer networks. While a There have been many attempts to improve the system

standard approach is to analyze the steady-state behavior é)ifficiency. For example, thermal noif&l] and biased strat-

the system described by the Nash equilijg it is legiti- g{iies[u] are found to reduce the fluctuations. More relevant
b

Many natural and artificial systems involve interacting

mate to consider how the steady state is approached, Sing§ his work, there were indications that maladaptation can
such processes are dynamical in nature, and the approagh reduced by appropriate choices of the initial condition in
may be affected by the presence of periodic, chaotic, ofhe Jow complexity phase. The dependence of initial condi-
metastable attractors. Dynamical studies are especially refions was noted in the replica approach to the exogenous MG
evant when one considers the effects of changing envirors g]. System efficiency can be improved by random initial
ment, as in economics or distributed control. conditions in the original MG 13], or systems driven by
The recently proposed minority gam@dGs) are proto-  vectorized external informatidiY]. It was noted that reduced
types of such multiagent systef?d. Extensive studies have variance can be obtained hysteretically by quasistatic in-
revealed the steady-state properties of the game when tlreease and decrease of the complexity from an unbiased ini-
complexity of the agents is higl6]. On the other hand, the tial condition, clearly demonstrating the nonequilibrium na-
dynamical nature of the adaptive processes is revealed wheuare of this phenomenofil4]. By generalizing the strategy
the complexity of the agents is low, wherein the final statesvaluation mechanism to the batch mode, and using a payoff
of the system depend on the initial conditions, and the sysfunction linear in the winning margin, the generating func-
tem often ends up with large fluctuations in the final statetional analysis showed that fluctuations are reduced by bi-
very remote from the efficient state predicted by equilibriumased starts of the agents’ strategy payoff valuatjds$ The
studieg[6,7,8]. The large fluctuations in the original MG are same is valid in its noisy extensidd6]. However, no sys-
related to the uniformly zero preference of strategies for altematic studies about the effects of random biases have been
agents. This has to be reexamined for at least two reasonsade.
First, when the game is used to model economic systems, it In this paper, we consider the effects of randomness in the
is not realistic to expect that all agents have the same prefnitial preferences of strategies among the agents. Initial con-
erence when they enter the market. Rather, the agents hadéions can be selected to make the system dynamics com-
their own preferences according to their individual objec-pletely deterministic, thus yielding highly precise simulation
tives, expectations, and available capital. For example, somesults useful for refined comparison with theories. As we
have stronger inclinations toward aggressive strategies, arghall see, a consequence of tHigersityis that agents shar-
others are more conservative. Furthermore, in games that uggg common strategies are less likely to adopt them at the
public information only, identical initial preferences imply same time, and maladaptation is reduced. This results in an
that different agents would maintain identical preferences ofmproved system efficiency, as reflected by the reduced vari-
strategies at all subsequent steps of the game, which is agaamce of the population decisions. We find interesting scaling
unlikely. Second, when the game is used to model distributecelations with the diversity for the variance, and a number of
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dynamical parameters, such as the convergence time, the The success of a strategy is measured bycitsulative
fraction of fickle agents, and the variance of wealth, illustrat-payoff (also calledvirtual pointin the literaturg, which in-
ing their dynamical origin. When diversity increases, we findcreases(decreasesby 1 if it indicates a winning(losing)
that the scaling dynamics is modified by a sampling mechaeecision at a time step. Note that the payoffs attributed to the
nism self-imposed by the requirement of the dynamics tcstrategies at each step depend only on the signs of the deci-
stay in the attractor, an effect we tekimetic samplingPre-  sions, and are independent of the magnitude of the winning
liminary results have been sketched[iv]. margins. This is called thstep payoffand follows the origi-
This paper is organized as follows. After introducing thenal version of the MG4]. Many recent studies used payoffs
minority game in Sec. I, we discuss the variation of fluctua-with magnitudes increasing with the difference between the
tions when diversity increases, identifying three regimes ofmajority and minority populations. In particular, payoffs that
behavior: multinomial, scaling, and kinetic sampling, ana-are linear in the population difference are callecbar pay-
lyzed in Secs. IlI-V, respectively. In addition to the fluctua- offs, and are found convenient in the application of analytical
tions, other dynamical properties, namely, the fraction oftechniques such as the replica metti6dior the generating
fickle agents, the convergence time, and the variance diinctional analysi$15]. In the analysis of this paper, the step
wealth, are discussed in Secs. VI-VIII, respectively. The papayoff is more convenient.

per is concluded in Sec. IX. At each time step, each agent chooses, out ofststrat-
egies, the one with the highest cumulative payofidated at
II. THE MINORITY GAME every step irrespective of whether it is adopted or) raotd

) ) ) ] makes decisions accordingly. The difference between the to-

We consider a population & agents competing selfishly ta| number of winning and losing decisions of an agent up to
to be in the minority group in an environment of limited 5 time step is called hewealthat that time. The long-term
resourcesN being odd 4]. Each of theN agents can make a goal of an agent is to maximize her wealth.
decision 1 or 0 at each time step, and the minority group’ 1o model diversity among the agents, the agents may en-
wins. For typical control tasks such as the distribution ofter the game with diverse preferences of their strategies. This
shared resources, the decisions 1 and 0 may represent Wssans that each agent has random intbgesto the initial
atternative resources, so that fewer agents utilizing a resymulative payoffs of each of harstrategies. We are inter-
source implies more abundance. For economic markets, thested in how the extent of randomness affects the system
decisions 1 and 0 correspond to buying and selling, respegsehavior, and there are many choices of the bias distribution.
tively, so that the buyers can win by belonging to the minor-a natural choice is the multinomial distribution, which can
ity group, as a consequence of the price being pushed dowle modeled by assigning integer biases todiserategies of
when supply is greater than demand, and vice versa. each agent, which add up to an odd integerThen, the

Each agent makes her decision independently accordingjzsed payoff of a strategy of an agent obeys a multinomial
to her own finite set of strategies, randomly picked before thgjistribution with mearR/s and varianceR(s—1)/s2. The ra-
game starts. Each of hestrategies is based on the history of 4, p=RI/N is referred to as theiversity
the game, which is the time series of the winning bits in the  £q; the binomial cass=2 and oddR, which will be stud-

most recenim steps. Hencen is the memory size. There are jeq here, no two strategies have the same cumulative payoffs
D=2" possible histories; thub is the dimension of the ,qyghout the game. Hence there are no ties, and the dy-
strategy space. Wh|le. most previous work c.onsgjered th@amics of the game is deterministic, resulting in highly pre-
caseD~N, we will mainly study the casen=1 in this pa-  (jse simulation results useful for refined comparison with
per. As we shall see, this simplification enables us to make gheories. This is in contrast with previous versions of the
detailed analysis of the system, revealing many additionaéame, which correspond to the special cas&s0.
features. , _ Furthermore, for an agent holding strategieandb (with

A strategy is then a Boolean function which maps each of, ) the biases affect her decisions only through the bias
the D histories to the decision 1 or 0. Denoting the winning gitference » of strategya with respect tob. Hence we let
state at timet by o(t) [o(t)=1, 0], we can convert am-bit g () he the number of agents holding strategieand b,
history o(t-m+1),...,0(t) to an integerhistorical state \yhere the bias of strategyis displaced byw with respect to

w’(t) of moduloD, given by b, and its disordered average is
m-1 R
© (=2 ot-1)2", (1) N 1
/=0 <Sab(w)>:22_|3_12_R R-w |. (3

and the Boolean decisions of strategyesponding to input

stateu are denoted by7=1, 0, corresponding to the binary To describe the macroscopic dynamics of the system, we
decisions{y=+1 via & =203~ 1. For subsequent analyses define theD-dimensional phase space with the components
of strategies, the label of a strategy is given by an integer ax(t), which is the fraction of agents making decision 1 re-

between 0 and2-1, where sponding to inpuj of their used strategies, with the fraction
D-1 making decision 0 subtracted. While only one of iheom-
a= >, g¥2P 1w, (2)  ponents corresponds to the historical statét) of the sys-

4=0 tem, the augmentation © components is necessary to de-
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(@) (b) A direction that tends to reduce the magnitude of the compo-
nents ofA%(t) [6]. However, a certain amount of maladapta-
tion always exists in the system, so that the components of
AX(t) overshoot, resulting in periodic attractors of peridg, 2

as reported in the literaturiel8,19. The state evolution is

0 @ given by the integer equation

Cé & w' (t+1) =mod2u’(t) + a(t),D), (6)

so that every statg appears as a historical state twice in a
steady-state period, witk(t) appearing as 0 and 1, each
0 exactly once. One occurrence bring$ from positive to
A2 @ negative, and the other brings it back from negative to posi-
tive, thus completing a cycle. The components keep on 0s-
cillating, but never reach zero. This results inamtipersis-
; tenttime serie§20]. For the example in Fig.(&), the steady
state is described by the sequence

0.06 T

0.04 |

0.02 |

A
g

}(D o n() =o(t)=0,1,1,0, (7

where one notes that both states 0 and 1 are followed by 0
and 1 once each.
For m=2, there are two attractor sequences as shown in
FIG. 1. (a) The state motion of a sample in the phase space fofFig. 1(b),
m=1, s=2, N=1023, andR=16 383. Empty dots: transient states.

0 0.02

Solid dots: attractor stategh) The attractors in the phase subspace #(t)=0,1,33,2,1,2,0 (8)

of Al andA? for m=2. Six of the eight states remain in the second and

quadrant of the subspace formed AYandA°. The location of the

other two states is indicated in th#¢ and A° subspace, instead of m(1)=0,1,2,1,3,3,2,0. 9)

the A' and A% subspace. The numbers in the circles denote thengain, one notes that each of the states 0, 1, 2, 3 is followed
elements of the attractor sequences in Egsand (9). by an ever[o(t)=0] and an odd statgo(t)=1] once each.

Furthermore, we note that the attractor sequences in(Bgs.
scribe the attractor structure and the transient behavior of thgnd (9) are related by the conjugation symmeiuyt) — 3
system dynamics. —u(t). For general values af, an attractor sequence can be
The key to analyzing the system dynamics is the observegptained by starting with the staje (0)=o(0)=0, and as-
tion that the cumulative payoffs of all strategies displace bysigning o(t)=1 if the value ofu’(t) appears the first time in
exactly the same amount as the game proceeds, though thgifs sequence, and 0 the second time, such as the attracters in

initial values may be different. Hence for a given stratégygqs (7) and(8). In general, other attractor sequences can be
pair, the profile of the cumulative payoff distribution remains yptained by computer search, and the number of attractor

binomial, but the peak position shifts with the game dynam-sequences can be verified to B&/2D, which forms the de
ics. Hence, once the cumulative payoffs are known, the statgjin sequence in terms ah, corresponding to the number
location in theD-dimensional phase space is given by of distinct ring configurations of lengthl® for which all

1 substrings of lengtim+1 are distinc{21].
AL = N > Su(@){O(w+Qy(t) - (1) & The population averages of the decisions oscillate around
a<b.w 0 at the steady state. Since a large difference between the

1 majority and minority populations implies inefficient re-
+O(— 0= Qu(t) + Qp(t) &} + NE S:é5. (4 source allocation, the inefficiency of the game is often char-
a acterized by the normalized variana@/N of the population
where Q,(t) is the cumulative payoff of strategy at time making decision 1 at the steadytstate. Since this population
t, S, is the number of agents holding two identical strategiessize at timet is given byN(1-A#* “)/2, we have
labeleda, and ©(x) is the step function ok. For agents 2 N
holding nonidentical strategies<b, the agents make deci- —=lim—={uY = (D, (10)
sions according to strategyif w+Q,(t)-Q4(t) >0, and use N =4
strategyb otherwise. Hence +{,(t) ~(,(t) is referred to as  yyhere( ), denotes the time average at the steady state.
the preferenceof a with respect td. In turn, the cumulative As shown in Fig. 2, the variance?/N of the population
payoff of a strategya is updated by for decision 1 scales as a function of tltemplexity a
_ _ ' ® () =D/N, agreeing with previous observatiof®]. When« is
Qa(t+ 1) = 0,(1) = &5 Tsgm T, ® small, games with increasing complexity create time series
Figure Xa) illustrates the convergence to the attractor forof decreasing fluctuations. A phase transition takes place
the visualizable case oh=1. The dynamics proceeds in the around a,~0.3, after which it increases gradually to the
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FIG. 2. The dependence of the variance of the population mak- p=RIN

ing decision+ on the complexity for different diversities at2

averaged over 128 samples. The horizontal dotted line is the limit of FIG. 4. The dependence of the variance of the population mak-

random decisions. ing decision+ on the diversity am=2 ands=2. Notations are the
same as those of Fig. 3. Inset: A comparison of the variances at

limit of random decisions, withr?/N=0.25. Whena < a, m=1 and 2 in Figs. 3 and 4.

the occurrences of decisions 1 and 0 responding to a given

historical staten are equal, and this is referred to as thegependent omn; (b) scaling regimewhenp~1,02/N~ pt
symmetricohase{22]. On the other hand, in thesymmetric  wth proportionality constants independent mffor m not
phase above, the occurrences of decisions are biased for ayg |arge;(c) kinetic sampling regimevhenp~ N, o2/N de-

least some history.. viates above the scaling with™? due to kinetic sampling

Figure 2 also shows the data collapse of the variance fogffects as explained below, and the scaling is given by
different values of diversity. Itis observed that the variance ;2/N~f,_(A)/N, whereA is thekinetic step sizgiven by

decreases significantly with diversity in the symmetric phase,

and remains unaffected in the asymmetric phi@&sd. Fur-
thermore, for a game efficiency prescribed by a given vari- A = NA /i = A |2N (11)
anceo?/N, the required complexity of the agents is much 7R mp’
reduced.
The dependence of the variance on the diversity is furtheand f, is a function dependent on the memory sime
shown in Figs. 3 and 4 for memory sizes 1 and 2, respec- To analyze the behavior in these regimes, we derive the

tively. The following three regimes can be identified andfollowing expression for the stepl A“(t)= A%(t+1) - AX(t)
explained in Secs. -V, respectivelya) multinomial re-  at timet. Using Eq.(4), we have
gimewhenp~N, ¢?/N~ N with proportionality constants

A=Y S SO0+ 0,1+ - Oyt + 1)

N
\ . a<b,w
10° .
= O(w+ Qu(t) = Q1) (&5 - &) (12
Since the arguments of the step functions are odd integers,
10° nonzero contributions to Eq.12) come from terms with

w+Q(t+1)-Qu(t+1)=x1 and w+Q,(t)—Qy(t)=F 1. Us-
ing Eq. (5), the two arguments differ by (€, — &;)sgnA*(t)

. N with =" (t). Hence the conditions for nonzero contribu-
107 r JoonN=511 & 1 tions become equivalent te+Q,(t)-Qy(t)=F1 and &
i:ﬁng?gz — &= ¥ 2sgn\X(t) for w=pu"(t). This reduces the steps to
-4 ] ! 1 N 1
10 10 10 10™ 10' 10° AAH(Y) = N > Sip(@) @+ Q1) = Q) £1)

p=RIN a<b,w,x
iy 12 Mo g
FIG. 3. The dependence of the variance of the population mak- X (&~ & £ 2sgi (V) (2)(& - &), (13
ing decision+ on the diversity am=1 ands=2. Symbols: simu- . _ )
lation results averaged over 1024 samples. Solid lines: theoryvhere u=u (t), and 8(n)=1 if n=0 and O otherwise. For
Dash-dotted line: scaling prediction. w=wu (t), this can be further simplified to
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2 R
AAK(t) = - sgmA(t) = F1-04(0) + Qut 1 1 (*™do
()=-sg ()Na<2bisab(+ a(t) + Qy(1) Ay S | Rew —Rf LIy
’ 27 abw o %)y 2m
X 8(&% — & + 2sgri(t)). (14)
1. _
To interpret this result, we note that change#fit) are only Xz[l + (&~ sy - L& 1(2)(& - &)
contributed byfickle agents with marginal preferences for o
their strategies. That is, those wight Q,,(t) - Q4(t)=21 and X[cosk, 0+ (& — &)i sink, 60 cosk, 0
&= &=+ 2sgmi(t) for w=u (t). Furthermore, the step 1 ek K A e
points in the direction that reduces the magnitudeve(t). +Ladps "0]};[# [cosko+ (&2 &)
Similarly, the steps along the directianother than the o .
historical stateu’(t) are given by Xi sink, 6 cosk, 6+ £&;sirtk, 6]. (20

The summation ovea<b can now be replaced by one-half
1 _ times the independent summations oaeandb. Noting that
V() = — - Mo 3
AR = S Sa(F1=0a(0) + Q) A& — b £ 25g0A“M) g ven statesu, v ..\,

X(£)(&- &) (15) > &g 8=0, (21)

where = (1). This shows that the steps along the nonh|s-We find that all terms in the expansion of E§O) vanish if

torical direction are contributed by the subset of those fickl . : s ! .
. o ~ " th v- The final [

agents that contribute to the step along the historical dlre?- ey contain unpaired decisiodz or &, The final result is

2

tion, and they can be positive or negative. de
Next we consider the disordered average of the steps in (AA¥(1)) = — sgnA* ZTCO§0
Eq. (13). For this purpose, it is convenient to decompose the 0
cumulative payoffs as xcog2k, - sgnA) [ | cogk,0. (22
vE WL
Qa(t):E ku(D &2, (16) Equation(22) describes the change induced by the payoff
o

component, (t) incremented by —sgA*(t). Since the step
size depends on time implicitly through the payoff compo-

wherek,(t) is the number of wins minus losses of decision 1nents, the sum of all changes inducedkyt) incremented

up to timet when the game responded to histqry Since

there are 2 variables of(),(t) andD variables ofk, (1), this from 0 yields
decomposition greatly simplifies the analysis, and describes 27 49 sink 6 cosk 6

.. .. = el Iy \ ittty S
explicity howQ,(t) depends on the strategy decisions. Intro- (A“(t) = A*(0)) = 277C0§0 sino 11 cosk,s.
ducing the integral representation of the Kronedkfor the 0 vER
preference, we can factorize the contributions @f(t) (23

~{y(t) into a product over the states, Similarly, the steps along the nonhistorical direction are

given by

2 de . )
S+ Q(t) = (1) £1) = f e[ ] dtaléaty), 2 . .
0o 2m \ (AA"(1))=| cosidsink,d cosk,d sin(2k,sgnA*
0

(17)
-16 [ cogk,6, (24)
where the explicit dependence d¢nis omitted for conve- Ny
Eéie;nsce here and in the subsequent derivation. Using the 'deQ\?hereva&,u*(t)z,u. The same result can be obtained from
Eqg. (23) by considering the difference of two equations when
1 one of the states labeledbecomes historical ari], changes
8¢ - &+ 25gnA (D) = J[1 7 (& - &)sgnar - ggg], BV TS0
(18)

IIl. THE MULTINOMIAL REGIME

[Pty _ o . Whenp~N"or R~1, there is a finite number of clusters
d?6a) = codep + (& ~ &)i sin ¢ cos¢ + Eaésit e, of agents who make identical decisions throughout the game.
(19)  Since there are many agents in a typical cluster, their identi-
cal decisions will cause large fluctuations in their behavior.
and introducing the average in E®), we obtain the follow- Consider the example @h=1 andR=1. There are only four
ing factorized expression from EL3) for w=pu(t): strategies. For a pair of distinct strategies, there is an average
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0

A A
=1 t=2 ¢=1 t=2
t=3 @ @ C >
1 = 1
A A
t=0
(@) t=0 (b) FIG. 5. (@—(d) The four attractors fom=1
and s=2 in the multinomial regime. The time
A° A° steps are relabeled witlx 0 corresponding to the
t=1 state withu'(t)=0 andu’(t+1)=1.

© A A
0

t

() (d)

of N/8 agents picking them, and/16 agents in each cluster (10), averaged over the four attractors, is then given by
with biases 1. As a result, we havé/N~ N. The propor- 2N

tionality constant depends an, and is sensitive to the pro- _ 72 2

. . Lo . ) . — = ——(7Cqy1 — 2CRr+1Cr+3+ 7CR43) - 26

file of the bias distribution. Since we consider the multino- N 128( Re1~ 2oriCrea t TCRea) (26

mial distribution in Eq.(3) in this paper, we call this the ) o ]
multinomial regime. Another choice in the literature is the The theoretical values are compared with simulation results

bimodal distributior{ 7,13—16, which may have different be- for the first three points of each curve corresponding to given
havior. values ofN in Fig. 3. The agreement is excellent. Note that
Consider the casen=1. Equations(22) and (24) show the variance in this regime deviates from the scaling relation
that the step siz&AA(t)) ~ O(1) and is thus self-averaging. With p™* in the next regime, as evident from the splaying
Since A%(0) is Gaussian with variancl™!, the values of down from the Ilngar relation in Fig. 3. However, when
AX(t) at the attractors can be computed@l). Depending <> 1: Cre1~Cria=~2/7R, a?IN red_tices to 3/1p,
on the initial positionA(0) = (A%(0),A%0)), four attractors showing that the deviation from the™ scaling gradually
can be identified. For example, Af(0) lies in the first quad- vanishes.

rant, and the initial historical state is 0, then the payoff com-, Now consider the casm=2. Starting from initial posi-
ponentsk = (ki(t), K%(t)) at the attractor are given biy(0) tions near the origin of the four-dimensional phase space, we

2(0,0). k(1)=(-1,0, k(2)=(~1,-1), K(3)=(-1,0, pro- consider the attractors resulting from the 16 quadrants and

i pra P four initial states. We find 16 attractors for the attractor se-
vided that whem\A*(1)=0 to order 1AA*(t) is also equal to 4, ence in Eq(8). The positions of one of the attractors are

0 to orderN™2 Analysis can be simplified by noting that s;mmarized in Table II, and the values () for the his-
when the payoff componenks(t) are restricted to the values ;i statesu= 4 (t), which are used to compute the vari-

0 and £1, Eq(23) can be written as ance of decisions in Eq10) are summarized in Table IIl.

27 49 Averaging over the period and over the attractors, the vari-
AXt) = k"f ZT(CQSg)[R+l+2V§m\kyl] =K, Cre1e23 k)]s ance of decisions in Eq10) becomes
0 vFER
@ N
(25) ﬁ = M(]Acé+7 + 41Cé+5 + 42C2R+3 + 15CZR+1 + 2CR+7CR+5
=2 " i
wherec,=27"(;,,) for even integen, and we have used the — 2Cri7Crea + 2CrreCres = 2CnseCrot)- 27)

facts thatAX(t) is self-averaging A*(0)~ N2 The loca-
tions of the four attractors are shown in Fig. 5 and summasince the attractor sequence in F9).is related to Eq(8) by
rized in Table I. conjugation symmetry, this expression is already the sample
The variance ofA*(t) of the historical stateg.=u’(t), average of the variance. Again, the theoretical values of the
averaged over the period for each of the four attractors, cafirst three points of each curve in Fig. 4 have an excellent
be obtained from Table I. The variance of decisions in Eqagreement with the simulation results, and deviate from the
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TABLE I. The four attractors fom=1, s=2 in the multinomial regime. In Tables | and I, the time steps
are relabeled witi=0 corresponding to the state wiji (t)=0 andu’(t+1)=1, the superscripts * of the
value 0 indicate the possible signs to ortef’2, andA#(t) with asterisks correspond to the historical states,
which are used to compute the variance of decisions in(Eg).

t ky(t) ko(t) AL(t) A(t) kq(t) ko(t) AL(t) A(t)
(a) (b)

0 -1 -1 ~Cria ~Chia 0 -1 o ~Chey
1 -1 0 ~Crit 0* 0 0 0 0*
2 0 0 0" 0* 1 0 Cre1 0*
3 -1 0 ~CRe1 o+ 0 0 o o+
(c) (d)
0 0 0 o o -1 0 ~Cre1 o
1 0 1 o CRi1 -1 1 —Ches CRe3
2 1 1 Crea CRe3 0 1 o+ CRi1
3 0 1 o Cre1 -1 1 —Cre3 Cres

p~! scaling in the next regime. WheR>1, cg,1=Cgriz  Hence the variance cannot be regarded as an intrinsic mea-
=~ CRri5=~ CRre 7= V2/7R, ¢?IN approaches 7/32p. sure of global efficiency. Nevertheless, the phase space mo-
The variance of decisions for higher valuesmfcan be tion points in the direction of reducing the winning margin,
obtained by exhaustive computer search starting from the 2as seen in Eq(14), which traps the attractors around the
guadrants of the phase space and Ghanitial states. Since origin, as shown in Figs. 1 and 5. As a result, the average of
the number of cases grows rapidly with one may use a decisions is bounded by the step sizes at the attractor, so that
Monte Carlo sampling of the initial conditions to determine small variances also imply small averages, and the variance
the variance. can still be considered as a good approximate measure of
Before we close this section, we remark that the periodicefficiency.
average of the decisiond*(t) at the historical states
=u’(t) have a vanishing sample average, but the periodic
average does not necessarily vanish for individual samples.
For example, the attract@a) in Table | has a periodic aver- Whenp~ 1, the clusters of agents making identical deci-
age of (A*(t))=—(cr1+Cre3)/2 at the historical statep.  sions effectively become continuously distributed in their
=u'(t). The variance is often regarded as a measure of thpreference of strategies. Since the shift of preferences at the
system efficiency, based on the observation that the averagdtractor is much narrower than the spread-out preference
decisions vanish at high values wf[4,9,22. However, this  distribution, the size of the clusters switching strategies is
is not the case for the low values mfwe are studying. In the effectively independent of the detailed profile of the prefer-
context of market modeling, a nonzero periodic average oénce distribution. For generic preference distributions, the
decisions indicates the existence of arbitrage opportunitiesyidth scales as/R, and hence the size of typical clusters
and in the context of modeling multiagent control, it meansscales asR™*2. This leads to the scaling of the variance
that there is an imbalance in the utilization of resourceso®/N~ p™* [24]. Compared with the typical cluster size of
scaling asN in the multinomial reg|me the typical cluster
TABLE II. An atractor form=2, s=2 in the multinomial regime ~ Size in the scaling regime only scales\2. Nevertheless, it

IV. THE SCALING REGIME

with the sequence in Eg8). is sufficiently numerous that agent cooperation in this regime
can be described at the level of statistical distributions of
t ko ki ky kg AC Al A2 A3 strategy preference, resulting in the scaling relation.
N " " " In the integral of Eq(22), significant contributions only
0 0 0 0 0 0o 0: o ' come fromé~1/\R or 6— 7~ 1/\R so that the factor c&#
1 1 0 0 0 cra 0 0* o* can be approximated by exgR6?/2). This simplifies Eq.
2 1 1 0 0 Crsg Crezg O o (22) to
3 1 1 0 1 Crs Creg O Cris 5
4 1 1 0 0 Crms Crs O ot (AA% (D)) = -4/ = SgNAX(t) (28)
5 1 1 1 0 Cris  Crus  Cris 0* . ) i )
6 1 0 1 0 cra s, O for =4’ (1). Since the step sizes scale!%‘é’z, they remain
7 1 0 0 0 Gy o o o self-averaging. Similarly{AA*(t))=0 using Eq.(24). The

two cases can be summarized as
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TABLE lIl. The values ofA(t) for the historical stateg.= " (t) for the attractors witim=2, s=2 in the multinomial regime in Eq(8).
The time steps are relabeled withO corresponding to the state withi (t)=0 andu” (t+1)=1; the superscripts * of the value 0 indicate the
signs to ordeN™%2,

Attractor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
,LL* (0) = O 0_ 0_ 0_ 0_ 0_ 0_ O_ 0_ _CR+1 _CR+3 _CR+3 _CR+5 _CR+3 _CR+5 _CR+5 _CR+7
,U,* ( 1) = 1 0_ 0_ 0_ 0_ _CR+3 _CR+5 _CR+5 _CR+7 0_ 0_ 0_ 0_ _CR+1 _CR+3 _CR+3 _CR+5
,U,* (2) = 3 0_ _CR+5 0_ _CR+7 O_ _CR+3 0_ _CR+5 0_ _CR+3 O_ _CR=5 O _CR+1 O_ _CR+3
©w(3)=3 cry O Cri7 o* Cri3 o+ Cris o* Cri3 0* Cris o* Cri1 o* Cri3 o+
w@=2 0 0" —Cres —Cre7 O 0" —Criz ~Cres O 0" —Criz ~Cres O 0" —Cre1 ~Cres
w(5)=1 Cris Cre7 Criz  Cris 0* o 0* o Cre3  Cres  Cre1 Cres 0* 0* 0* 0*
@ (6)=2 Criz  Cris o 0* Cris  Crs7 0* 0 Cre1 Cre3 o 0" Cre3z  Cris 0* 0"
w(7)=0 Cri1 Crez Criz  Cris  Crez  Cres  CRe5  CRe7 0* 0 0 0* o 0* o o
2 2 7R
AAH() == 6, o \/ —= SINAX(L). 29 \/—frac<\/— ") and
| 2 | R
. L — frac —A“) -17, 31

This result shows that the preference distribution among WR{ ( 20 (39

agents of a given pair is effectively a Gaussian with variance . .
R, so that the number of agents switching strategies attimeWhere fraéx) represents the decimal part ef Using Eq.
scales as two times the height of the Gaussian distributiofLQ. this corresponds to a variance of decisions given by
(two being the shift of preference per stewhich isv2/7R. IN=f(p)/2mp, where

Thus by spreading the preference distribution, diversity re-

duces the step size and hence maladaptation.

As a result of Eq(29), the motion in the phase space is
rectilinear, each step only making a move of fixed size along
the direction of the historical state. Consequently, each state
of the attractor is confined in B-dimensional hypercube of

size V2/7R, irrespective of the initial position of thé*

f(p) =

%ZE:) { {frac( \/?A{)‘)T— frac( \/?Aé‘)
(el )4}

n=0

components. This confinement enables us to compute th@inceA§ are independent variablefp) is simplified to

variance of the decisions. Without loss of generality, let us

relabel the time steps in the periodic attractor, witf® cor-
responding to the state witp'(t)=0 and u'(t+1)=1. We
denote ag, the step at which statg first appears in the
relabeled sequencgFor examplety,=0, t;=1, t,=4, andt;
=2 for the attractor sequence in E@).]

When stateu first appears in the attractor on or after

=0, the winning state is(t,). Furthermore, since there is no

w=(1-2){ e )
ol o))

Since Af are Gaussian variables with mean 0 and variance
N1, we have

(33

phase space motion along the nonhistorical directions,

AX(t,)=A*(0). Since the winning state is determined by the

minority decision, we havé\*(0)[20(t,)—1]<0. Similarly,

when stateu appears in the attractor the second time, the

winning state is 1lwf(t,), and A“(t)=A*0)+[20(t,)
-1]y2/7R. The winning condition imposes thak“(t)[1
—20(t,)]<0. Combining,

-/ W—ZR < A4(0)[201(t,) - 1] < 0.

Suppose the game starts from the initial stafe which are
Gaussian variables with mean 0 and varianc&.1They
change in steps of siz¢€2/#R until they reach the attractor,
whose D historical states are then given by

(30)

R "\ 1 F e+ 9imp
([l V)= [0 2 =5 e

(34)

Whenp <1, the integrals are dominated by peakg=a0 and
1, yielding (frac(\ 7R/ 2A%)) =([frac(V7R/2A%) 1) =1/2. As
a result,f(p)=(1-1/2D)/2. On the other hand, whem>1,
the step sizes become much smaller than the varianég,of
so that fracvV7R/2A5) becomes a uniform distribution be-
tween 0 and 1, leading tdfrac(\mR/2A4))=1/2 and
([frac(\'mRI2A¥)19=1/3, resulting in (1-1/4D)/3 for
p>1. Hencef(p) is a smooth function ofp varying, for
example, from 3/8 to 7/24 fan=1. Thusc?/N depends on
p mainly through the step size factor 2, whereasf(p)
merely provides a higher order correction to the functional
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[5)]

dependence. This accounts for the scaling regime in Figs. @
and 4. Furthermore, we note tH#ép) rapidly approaches 1/3
when m increases. Hence for general values f ¢?/N
—1/6mp, provided thaim is not too large. This leads to the
data collapse of the variance for=1 andm=2 in the inset

of Fig. 4.

Analogous to the multinomial regime, the hypercube pic-
ture implies that both the standard deviation and the averageg
of A* are bounded by the step size. Hence the variance is 2 2
sufficient measure of system efficiency.

This result can be compared with that [ib3], where it
was found that the variance scalesad€ in the presence of 1
random initial conditions. A similar!? scaling was also wwﬂ
reported for the batch ME15,8]. Their results are different e M
from ours in that the variance is effectively independeriof ‘ ‘ e
(where«=D/N). However, the simulation data in Fig. 2 in- 2001 1001 - 1001 2001
dicate that the difference may not be in conflict with each preference (w + €2, - &)

other. For a sufficiently large value pf sayp=16, the data FIG. 6. Experimental evidence of the kinetic sampling effect for
in the regime immediately below, appears to be consistent n,— 1. steady-state preference distribution of the average number of
with a power-law dependence with an exponent approachinggents holding the identity strategy and its complement, immedi-
0.5, as predicted bj13,15. Whena reaches lower values, ately beforet=0, and p=N=1023 and averaged over 100 000
the variance flattens out, showing that our results are applisamples. Inset: The labeling of the time steps in the attractor.
cable to the regime af being not too large.

er of agents

average

[=)

This effect that favors the cooperation of larger clusters of
agents is referred to as thénetic samplingeffect. To de-
V. THE KINETIC SAMPLING REGIME scribe this effect, we consider the probability Rf(AA) of
When p~ N, the average step sizes scaleNi$ and are  Step size\A in the attractor. For convenience, we only con-
no longer self-averaging. Rather, Ei4) shows that the size SiderAA“>0 for all u. Assuming that all states of the phase
of a step along the direction of historical states at tinie ~ SPace are equally likely to be accessed by the initial condi-
2/N times the number of agents who switch strategies ation, we have
time t, which is Poisson distributed with a mean2, im- —
plied by Eq.(28). HereA is the average step size given by Par(AA) _EA: PalAAA), (35)
Eg. (11). However, since the attractor is formed by steps ) - o N
which reverse the sign of /A the average step size in the WherePa(AA,A) is the probability of finding the positioA
attractor islarger than that in the transient state, because avith displacemenfA in the attractor. Consider the example
long jump is the vicinity of the attractor is more likely to get 6
trapped. ‘ A A
To consider the origin of this effect, we focus in Fig. 6 on =3 =4

u E.:La épb ‘/1‘17‘{32?' =5

how the average number of agents, who hold the identity >
strategy witho=u and its complementary strategy, =1 01 4::‘
—u, depends on the preferenes- Q) ,— (), when the system 4l T L a7
reaches the steady state in games withl. Since the pref- o | v o ’
erences are time dependent, we sample their frequencies at
fixed time, say, immediately befote 0 in the inset of Fig. 6.
One would expect that the bias distribution is reproduced.
However, we find that a sharp peak existsaat),—Qy
=-1. This value of the preference corresponds to that of the%
attractor step fromi=3 to 0, when at state 0, decision 0 wins
and decision 1 loses, angh),—, changes from -1 to +1. Lt "
The peak at the attractor step shows that its average step |
self-organized to be larger than those of the transient step:
described by the background distribution. Similarly for

=2, Fig. 7 shows the average number of agents who hold the

XOR strategyé; and its complemengf;=-£;, as shown in FIG. 7. Experimental evidence of the kinetic sampling effect for
the left inset of the figure, when the attractor sequence is Eqn=2: steady-state preference distribution of the average number of
(9). At the attractor step immediately befdre4 in the inset  agents holding the XOR strateg§ and its complemeng/ (left

of Fig. 7, the state is 1. Decision 1 wins and decision 0 losesnse, immediately befor¢=4, andp=N=511 and averaged over
changing the preference+Q,-Q, from -1 to +1, and 50000 samples. Right inset: The labeling of the time steps in the
hence contributing to the sharp peakeat Q,—Q,=-1. attractor.

3+t 3 -1 -

rage number of agents

i W
0 it Mo,

-1001 -1 1001
preference (o + Q, - Q)
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of m=1, where there is only one step along each ads
The sign reversal condition implies that

PHYSICAL REVIEW E 71, 066103(2005

4 3
(AA®)PAATAA )pgi= ;—? {256<é> + 240(9)

8 8
_ _ 2
Pa AA,A) = Peo(AA) [ ©(- A“(A* + AA),  (36) .\ 40<é) Al 42
K 8 8
where Ppg(AA) is the Poisson distribution of step sizes, Together we obtain
yielding
(MM = 2A%+15A2+20A + 4 3
Par(AA) = Pro(AA) [T AA. (37) MNP+ )
g The possible attractor states are given A%=m,/N and
We note that the extra factors afA* favor large step sizes. m,/N-AA#, wherem,=1, 3, ..., NAA#-1. This yields a

Thus the attractor averagégAA*)?),, Which are required vanance of

for computing the variance of decisions, are given by

((AAT)?AAAA )py;

<(AA1)2>an = (38)

D-1
£:N< 1 {(m&)z_Mﬂ(m&%}(AAﬂ)z}
N 4\|DZ|\N N/ 2

(AA"AR g o )
. . . 1 m, 1
Furthermore, correlation effects come into action when the - [—E (—’i - —AA")] }> (44)
step sizes become non-self-averaging. There are agents who Do\ N 2

contribute to botlAA* and AA™, giving rise to their correla-

Averaging over the attractor states, we find

tions. Thus, the variance of decisions is higher when corre-

lation effects are considered. In E44), the strategies of the

a* _ T((NAA")?)q+ T((NAAT)?) o4~ 8

agents contributing tdA* and AA™ satisfy £,-&=+2 and N 19N ’ (45)
&,—&,= ¥ 2, respectively. Among the agents contributing to ] o )

AA*, the extra requirement of,— &=+ 2 implies that an  Which gives, on combining with Eq43),

average of 1/4 of them .alsq contribute Ad\". H(_ance, thg o2 14A3+ 105A2 + 132A + 24

number of agents contributing to both steps is a Poisson —= . (46)

variable with meanA/8. Similarly, the number of agents

N 96N(2A + 1)

exclusive to the individual steps are Poisson variables withwhen the diversity is lowA>1, and Eq.(46) reduces to
means A/8. Algebraically, Eq(14) can be decomposed as 42/N=7/48xp, agreeing with the scaling result of the pre-

AAt == E D ST - Qu+ QY AE-E+2)0E - &

a<b r=+1

—2r)+—2 D S~ 1= Qa+ QS - & +2r)

a<br +1

X[8(&; - &)+ 8&; — & +2n)]. (39

vious section. Whep~ N, Eq.(46) has excellent agreement
with simulation results, which significantly deviate above the
scaling relation, as shown in Fig. 3.

Whenp> N, Eq. (46) predicts thaiz?/N should approach
1/4N. This can be explained as follows. Analysis shows that
only those agents holding the identity strategy and its
complement can complete both hops alongAheaxes after
they have adjusted their preferences a¢a-Q,—Q,=%1.

Respectively, the first and second terms are equal % 2/ Since there are fewer and fewer fickle agents in the [pnit

times the number of agents, common to both st&p$ and
exclusive to the individual steps, with meat$8 and 3\/8,
as can be verified by a derivation similar to that of E2pR)
from Eqg.(14). Hence the denominator of E@8) is given by

(AA"AAYpg= 5 2, e—A,/B(é>a°

agapa 20 \8
@308 (g7 \ &g 308 [ gp \ &
“an (3) ol (?) (B0 +a.)
X(ag+a). (40)

Expressing the moments of Poisson variables in terms o

their means, we arrive at
e 4 A2 A
(AATAA ) pi= W|:16<§) + §:| . (41)

Similarly, the numerator of Eq.38) is given by

>N, one would expect that a single agent of this type would
dominate the game dynamics, aed/N would approach
1/4N.

However, as shown in Fig. 3, the simulation data ap-
proach the limit 0.430 when p>N, significantly higher
than 0.25N. This discrepancy requires consideration of the
waiting effect, which has been sketched[it7], and will be
explained in detail elsewhere.

Next, we turn to the kinetic sampling effects for=2. As
shown in Fig. 1b), the situation is more complicated than
that of m=1 since there are two steps moving along the
direction A® and A?. Consider the attractor sequence in Eq.
g8) The stepAA(1) can initiate fromAl=m,/N, with m,

, =NAA(1)+1, where for convenience the state la-
bels of the step sizes at tinteare implicitly taken to be the
historical stateg.’(t). Similarly, the stepAA(5) can initiate
from Al=mg/N, with mg=1, ..., NAA(5)-1. However,
since the two steps are linked by steps along the direéfon
their positions are no longer independent. Taking into con-

066103-10



EFFECTS OF DIVERSITY ON MULTIAGENT... PHYSICAL REVIEW E 71, 066103(2005

A2 symmetrically positioned, that is, their midpoints have the
sameA! coordinate. In this case, the possible initial positions
of the steps aré\(1)=my/N, with m;=-1, ..., -[NAA(1)

;@ +NAA(5)]/2+1, andA(5)=ms/N, with ms=m;+[NAA(1)

+NAA(5)]/2. Thus, the number of possible states along the
direction A is [NAA(1)+NAA(5)]/4. Considering the mo-

; tion in the four directions, the total number of possible states
%’ f A is [NAA(0)/2J{{NAA(1)+NAA(5)]/4}[NAA(2)/ 2[{[ NAA(4)

‘ +NAA(6)]/4}.

Extending the derivation of Eq45) to the case om=2,
we have

NAA() o

i

INAA(B) — NAA(II/2 N "~ 256 4

2
+ 5<AA(2)2>att+ 5 w -16 ,
att

2
N {5<AA(O)%+5<M>
att

FIG. 8. The relative positions of the stef#\(1) andAA(5) for
the caseAA(5)>AA(1). Here they are shown symmetrically

positioned. (47

sideration the many possibilities of their relative displace-
ments makes the problem intractable. As shown in Fig. 8, wavhere the attractor averages are defined as the Poisson aver-
consider only the most probable case that the two steps asges weighted by kinetic sampling. For example,

(AA(O)[AA(L) + AA(5)]AA(2)[AA(4) + AA(B)JAA(0)?)py,

2
(AA(0) et = (AA(O)[AA(L) + AA(S)JAA(2)[AA(4) + AA(B) )po;

(48)

This requires us to compute Poisson averages such as (AA(1)--- AA(k))
(AA(t) - AA(ty))por The following identity for Poisson av-

erages is useful. Consider a universal seltlotlements, and < ) n PR 1
the sizes of the se®, - By and their intersections are Pois- H b+ 2 b 11 b bric [ (5)
son distributed. Then the expectation of the product

|B4]---|B| is given by

r<s u#rs

Wherebrl...ri is the average number of agents simultaneously
contributing to the stepAA(ry)---AA(r,).

Consider the attractor sequence in E§). Tracing the
(Baf -+ B} = H (B + 2 (B nBNHIT (B + - time evolution of the cumulative payoffs, the step sizes at

res uzrs =2 and 6, for example, are given by
+< rlgBr > (49
- A2 =23 S Sy-1- 0,2+ 02D AE- §-2),
This identity can be proved by writing Hacbrn (52)

By| -+ |By = E 2®<ule81 -O(iy € By (50)

i=1 =1

2
AAB) == X Sip(—1" = Qa(2) + Qy(2)

Na<br’:tl

where®(i, € B,) if i, € B, and 0 otherwise. In the limit afA G- araE-gra). (53

approaching infinity, the case that gllare distinct yields the

expectation value in the first term of E@L9), the case that Following the analysis of Eq.39), we findb,=bg=A/2. To

ir=ig corresponds to the second term, and the case that all find b,s, we note that the agents shared by the two steps

are identical corresponds to the last term, and so on. sat|sfy eitherr=r’ and §a §b §a =-2r, or r=-r’ and
Therefore, we can write &-&=0, &-g=2r. This leads to

066103-11



WONG, LIM, AND GAO PHYSICAL REVIEW E 71, 066103(2005

TABLE IV. Values ofby, ..., for the attractor sequence in H&). A°
The steps at=3 and 4 are identical; so are the steps= and 7.
Other unlisted parameters are zero.
Al2 bo, b1, by, by, bs, bg
A/4 b15, b46
A/8 Po1, bos, D12, D14, D16, P24, b5, bsg R
3A/32 Po2, boa, Pos, bas, b2s
A/16 Po1s, boss, D125, bass
A/32 bOlZv b014: bOle bOSGv b124: blZGv b245
A/128 Po124, bo126
A/64 Do125, Do24s FIG. 9. An attractor of the exogenous minority game for
m=1.
effects have to be taken into account in analyzing the case
be= 2 3 (S(-1 - Qa2 + p2NAGE- -2 T yeng
a<br=+1 '
L s L4 In summary, we have explained the reduction of variance
X{o& = &+ 2r)8(8— &+ 2r) + 8(&, - &) by the reduction of the fraction of fickle agents when diver-
X §§— Sﬁ— 2n)}. (54) sity increases. The theoretical analysis from Sec. Il to Sec.

V spans the three regimes of sm&l p~* scaling, and ki-
The two terms in this expression consist of the contributiongietic sampling, yielding excellent argreement with simula-
to AA(2), with the extra restrictions of.-é=¢2-&2=-2r,  tions over seven decades.
or &-¢=0 and £-&=2r, respectively. Sinceg - g It is natural to consider whether the results presented here
=+2r and O with probabilities 1/4 and 1/2 respectively, wecan be generalized to the case of t#eogenousMG, in
getb,s=3A/32. Other parameters are listed in Table IV. ThisWhich the informationu(t) is randomly and independently

enables us to find drawn at each time stepfrom a distributionp*=1/D [6].
This is different from the presemndogenousersion of the
(AA(O)JAA(L) + AAB)TAA(4) + AA(B)JAA(2))poi MG, in which the information is determined by the sequence
1 169 of the winning bits in the game history. The similarities and
= W(SM4 +84A% + TAZ + ZA) : (55)  differences between the behavior of those two versions have

been a topic of interest in the literatufé,18—20,25-2]
Here we compare their behavior in games of smallising
the phase space we introduced.

In the scaling regime, the picture that the states of the

Other expressions appearing in E47) can be found simi-
larly. The final result is

. . , 272061, 7583 game are h_opping betwe_en hypercubes in the phase space
o2 160A° + 168\ + 4772A° + 64 A+ 3 A+17 remains valid, as shown in Fig. 9 fan=1. At the steady
N 169 ' 1,000
64N<32A3 +84A% + A+ 2) N
(56)
Since the attractor sequence in E®). yields the same result, 0.100 .

Eqg. (56) is the sample average of the variance. When the
diversity is low, A>1, and Eq.(56) reduces toc?/N -
=5/32mp, agreeing with the scaling result of the previous
section. Whemp~ N, Eg. (56) shows that the introduction of

kinetic sampling significantly improves the theoretical agree- %' | ooN e ]
ment with simulation results, as shown in Fig. 4. When A AN = D047
p>N, Eq.(56) implies thato?/N approaches 17/128 This et N = 8191

result is not valid since it is below the lowest possible result
of 1/4N when each step is excuted by the strategy switching  0.001 L w w w
of only one agent. The discrepancy can be traced to the ap
proximation that the average number of states along the di-
rection At is [NAA(1)+NA(5)]/2, which is not precise for FIG. 10. The dependence of the fraction of fickle agents on the
small steps. For example, it can take half integer values. Weandomnes® at m=1 ands=2. Notations are the same as those of

will not pursue this issue further since, in any case, waitingrig. 3.
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1.000 TABLE V. The number of types of fickle agents for the attrac-
tors (a)—(d) in Fig. 5.
) (a) (b) (c) (d) Total
0.100 | -3 1 0 0 0 1
-1 5 4 0 3 12
w5 1 1 3 6 3 13
3 0 0 1 1 2
0.010 |
Total 7 7 7 7
tion of the payoffs in the attractor dynamics. Consider the
0.001 = s 0 0 example ofm=1. We count the type of fickle agents labeled
R by the strategy paira<<b and biasw for all t, with prefer-
ences

FIG. 11. The dependence of the fraction of fickle agents on the _
randomnes® at m=2 ands=2. Notations are the same as those of @+ Qa() =Qp(t) = £1 and & - &= + 2 sgnA(Y),

Fig. 3. (57)

state, the attractor consists of hoppings along all edges of vghere,u-,u (D). Equivalently, we have
hypercube, in contrast to the endogenous case, in which only 1 ‘O o
a fraction of hypercube vertices belong to the attractor. The @ =~ £4(t) + Qy(t) - 5[20(0 -1V -& ), (58)
behavior in the scaling regime depends on the scaling of the
step sizes with diversity, rather than the actual sequence afhereQ(t) is updated by
the steps. Consequently, the behavior is the same as the en- .
dogenous game. In the kinetic sampling regime, the physical Qu(t+1) = Q1) + & “[20(t) - 1]. (59
pic_ture that larger steps are more Iikely to be terPEd remainsfhis enables us to count the types directly from the knowl-
yahd, and the behavior remains qualitatively similar to thatedge of the attractor sequences, such as E§sand (8),
in the endogenous case. without having to know the step sizes. Resultsiior1 and
m=2 are listed in Tables V and VI, respectively. Note that
VI. THE FRACTION OF FICKLE AGENTS the values [n the tables depend on the conyention of o_rdering
the strategiea<b, and here the convention of E(R) is
This physical picture of the diversity effects is further adopted. Other conventions may classify the types with bias
illustrated by considering the fractiofy, of fickle agents  as -w, or vice versa. Since the average number of fickle
when the game has reached the steady state. They hold straggents of each type is given by E®), f; can then be ob-
egy pairs whose preferences are distributed near zero, andined by summing up the contributions from each type.
change sign during the attractor dynamics. As confirmed in Consider the example oh=1. Table V shows that there
Figs. 10 and 11, three regimes of behavior exist. are seven types of fickle agents for each attractor shown in
In the multinomial regime, we can make use of the ex-Fig. 5. Averaging over initial states, we find that an average
plicit knowledge about the attractor sequence and the evolwsf 25/4 types consist of agents with biases +1, and an

TABLE VI. The number of types of fickle agents for the 16 attractors in Table Iha®.

Attractor
w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16ofal
-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
-5 0 0 0 0 0 2 0 3 0 1 1 4 0 6 4 9 30
-3 0 3 5 10 8 16 16 23 7 20 22 28 24 33 33 38 286

-1 19 42 42 54 52 59 69 66 76 73 76 75 91 84 94 85 1057
1 120 87 92 71 93 70 66 59 90 72 72 60 75 55 54 49 1185
3 48 50 44 46 37 37 36 33 21 25 20 24 4 15 9 11 460
5 7 11 10 12 4 9 7 9 0 3 3 3 0 1 0 1 80
7 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 5

Total 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194
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average of 3/4 types have=+3, this result being indepen- 97 |2
dent of the ordering oh<b. Since the average number of fr = 6a\V R (63)
agents holding strategy par<b is N/8, we have m
R R In the kinetic sampling regime, the fraction of fickle
25 1 3 1 agents form=1 is obtained by replacingAA*)? in the nu-
fi=—-| R-1 |g+ =z R-3 |- (60)  merator of Eq.(38) by (ay+a,+a.)/N, following the nota-
32\ — |2° 32| —— |2 ) . .
2 2 tion used in Eq(40). The result is

For m=2, the number of types of fickle agents for the 16

attractors in Table Il are listed in Table VI. There are 194 _14A?+39A+8
types of fickle agents for each attractor. The fraction of fickle i~ 8N(2A + 1)
agents is given by

(64)

112 R 1 373 R 1 In the limit of low diversity, A>1 and Eq.(64) reduces to
=—|R-1]|=+—| R-3|= Eqg. (62). In the limit of high diversity,A<1 and f; ap-
1024 > 281024 > A proaches 1N, implying that a single agent would dominate
the game dynamics. However, since waiting effects are ne-
R glected, this result is considerably lower than the simulation
o5 1 + 3 R-7 . (6D results.
1024 > 2R 1024 > 2R Form=2, the fraction of fickle agents is given by the size
of the union set of fickle agents at all steps,

1:fi

In the scaling regime ~ 1, we consider the limit oR~N in
Eg. (60), and obtain fom=1,

1
7 2 1Efi = N<E br - E brs+ 2 brsu' : > (65)
fr==-\—. (62 r r<s r<s<u att
8 V7R
Similarly, from Eg.(61), we have form=2, where

(AAO)[AA(L) + AA(5) JAA[AA4) + AAB) b ... Jpo

b, ... = 66

B e N AO)TAAL) + MG AARIAA) + AA(6)])poi (60
[

The result is tremely high diversity, where waiting effects have to be
taken into accounit17].
80905
155204+ 817Q\3 + TAZ +2801A + 64
fo= . (67) VIl. CONVERGENCE TIME
169
32N<32A3 +84A% + TA + 2) Many properties of the system dependent on the transient

dynamics also depend on its diversity. For example, since

In the limit of low diversity,A>1 and Eq.(67) reduces to diversity reduces the fraction of agents switching strategies
Eq. (63). In the limit of high diversity,f; approaches IN.  at each time step, it also slows down the convergence to the
However, by tracing the types of fickle agents switchingsteady state. Hence the convergence time increases with di-
strategies at each time step, one cannot &ingsingle type  versity.
of agents that can contribute to the dynamicslbfsteps. In We consider the example ofi=1. The dynamics of the
fact, the minimum number of agents that can complemengame proceeds in the direction which reduces the variance
each other to complete the dynamics is two. For exampld6]. In the multinomial regime, the initial position @&* in
one agent can complete the stepg=0,1,2,3,4, while the the phase space lies in the attractor. Convergence to the
other one can complete the steps5,6,7. Hence the steady state is almost instant. Starting from the initial state O,
asymptotic limit of f;=1/N is not valid. The source of the the convergence time is 2,0,0,1 in the four corresponding
discrepancy is the same as that for the invalid result of theuadrants of the phase space in Fig. 1. For the initial state 1,
asymptotic variance of decisions explained in the previoushe game has the same set of convergence times, except that
section. the order described is permuted. Hence, the convergence

As shown in Figs. 10 and 11, the theoretical predictionsdime is 2, 1, and O with probabilities 1/4, 1/4, and 1/2,
are confirmed by simulations, except in the regime of ex+espectively, yielding the average convergence time of 3/4.
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FIG. 12. The convergence paths starting from the initial state O
in the four quadrants of the phase spacerforl.

-+t N = 8191
10° | —— theory

convergence time ©

In the scaling regime, it is convenient to make use of the
rectilinear nature of the motion in the phase space. We divide
the phase space into hypercubes with dimensig&rR. 10™" . L L L L
Starting from the initial state 0, the convergence paths are
shown in Fig. 12. The convergence timef an initial state
from inside a hypercube is the number of steps it hops be- F|G. 14. The dependence of the average convergence time on
tween the hypercubes on its way to the attractor, as shown ithe diversity atm=1.

Fig. 13.

In general, the convergence time is given by the following e o 0
cases: (@ 3x+y+2 for x=0 and y=-x-1, where x =1\ J Dxf Dy(3x+y)+J Dy
=|y7R/2AY(0)] and y=[\7R/2A%0)], with |z] being the in- 2N Jo - —e

teger part ofz; (b) -x—3y—-4 for y<-2 andy<-x-2; (c) -y 0 o0
—x+y-1 forx=<-2 andy=-1; (d) y for x=—1 andy=0; (e) Xf Dx(—x—3y) +f DXJ Dy(=x+Y) (,
0 for x=y=-1. - w20

The average convergence time is then obtained by averg- (68
ing over the Gaussian distribution of the initidt(0) with P
mean 0 and variance N/ Whenp is small, the initial posi- WhereDx=dx *7?/\2m is the Gaussian measure. The re-
tions are mainly distributed around the origin, reducing theSult is
convergence time to that of the multinomial regime. Wipen =
is large, the initial positions are broadly distributed among T=(2+V2)\p. (69
many hypercubes. n t_he phase Space, anq one can takeAg shown in Fig. 14, there is an excellent agreement between
continuum approximation as shown in the inset of Fig. 13“theory and simulations.
Thus, the average convergence time is given by The p'2 dependence of the convergence time can be in-
terpreted as follows. In the scaling regime, since the step size
in the phase space scales asR/nd the initial position of
A* has components scaling as\N, the convergence time

)
A A

(R/2)"-A"(0)+4°(0)]

(xR72)"[34' (0)+4°(0)]

1
A FIG. 13. The dependence of

(/) -4’ (0)-34°(0)] the convergence time on the initial
position in the phase space for
11 =1, starting from the initial state
> 0. The dimensions of the hyper-
10 Al cubes are/2/nR. Inset: The three
regimes of convergence time in
the continuum limit.

o
Wl |[o
MW (N|o0|©

N~ DND]|O[A~]O
Al MMlO[O]|

ojlaa(fp|=2IPPW]A~A]O

O|lO|W|(OoO|J]Oo(=|MD|W
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TABLE VII. The variance((Q)tz)a of the periodic average of AO
wealth of the four strategies, for the four attractoravef 1. +
& & @ (b) (© (d) 85/8 |89/8
Qo -1 -1 1 0 -1 0 53/8 |41/8 |45/8 |65/8
Q) 1 -1 -1/2 1/2 -1/2 -3/2
Qo) -1 1 1/2 -1/2 1/2 3/2 53/8 |25/8 |13/8 |17/8 [37/8 |73/8
(Qa) 1 1 -1 0 1 0
85/8 141/8 |13/8 [1/8 | 5/8 |25/8 |61/8 |[113/8
(QDDa 5/8 1/8 5/8 9/8 >
89/8 |45/8 |17/8 | 5/8 | 9/8 |29/8 |65/8 [117/8 A1

65/8 |37/8 |25/8 |29/8 [49/8 |85/8

should scale a$1/VN)/(1/VR)~ p*/2. This scaling relation

remains valid in the kinetic sampling regime whegre-N, 738 |61/8 |65/8 |a5/8
since kinetic sampling affects only the description of the at-
tractor, rather than the transient behavior. 1138 |117/8

VIIl. WEALTH SPREAD

Another system property dependent on the transient is the
distribution of wealth or resources, especially those among FIG. 15. The dependence of the variance of wealth among the
the frozen agents(that is, agents who do not switch their agents holding identical strategies on the initial position in the
strategies at the steady statSince the system dynamics phase space fom=1. The dimensions of the hypercubes are
reaches a periodic attractor, they have constant average/=R.
wealth at the steady state. Hence any spread in their wealth
distribution is a consequence of the transient dynamics. R

The simiplify the analysis, we only consider the agents W=— f DxJ Dy(x? +y?) = mp. (70
who hold identical strategy pairs. Since they never switch 2N
strategies, and both outputs 1 and 0 have equal occurencefie same scaling relation applies to the kinetic sampling
the attractor, their wealth averaged over a period becomesagime. As shown in Fig. 16, the agreement between theory
constant, and their wealth is equal to the cumulative payofand simulations is excellent. Note that the behavior closely

of the identical strategies they hold. ~ resembles that of the convergence time in Fig. 14, showing
In the multinomial regime, the wealth of agents holdingthat it is a transient behavior.

identical strategies: is given by Eq.(16), wherek,(t) are
listed in Table I. Fom=1, the periodic averagg),); of the

. . . . IX. DISCUSSION
cumulative payoffs of strategies and their variangés,)?),

are listed in Table VII. Thus, the wealth sprefd is the We have studied the effects of diversity in the initial pref-
variance((Q.)?), of (), averaged over the four strategies erence of strategies on a game with adaptive agents compet-
and the four attractors, and is equal to 5/8. ing selfishly for finite resources. Introducing diversity is use-

In the scaling regime, the initial position may be locatedful both in modeling agent behavior in economic markets,
away from the origin of the phase space. Using the hyperand as a means to improve distributed control. We find that it
cube picture of the transient motion, we can work out theleads to the emergence of a high system efficiency. We have
cumulative payoffs of the strategies by considering theirmade use of the small memory sizesto visualize the mo-
changes when their initial position shift to successive neigh-
boring hypercubes. The distribution of wealth variance is '
shown in Fig. 15. In general, ik=|\7R/2AY(0)] and y 10° |

=|\7R/2A%0)], then the average wealth of the four strate- = e N = 127
gies in Table VIl isx+y+1, x+y—1/2,x-y+1/2, and % = e N =511
-y-1, respectively. This leads to a wealth spreadfy? g 100 L i%jg?g: .
+3x/2+y/2+5/8. 5 —— theory
The value ofW is then obtained by averaging the wealth %
spread over the Gaussian distribution of the initial positions'§ 10" | .

in the phase space, each compon&t(0) with mean 0 and
variance 1N. When p is small, the initial positions are
mainly distributed around the origin, reducing the wealth 10
spreadW to the value at the multinomial regime. Whens

large, the initial positions are broadly distributed among
many hypercubes in the phase space. Applying the con- FIG. 16. The dependence of the variance of wealth on the di-
tinuum approximation, versity among the agents holding identical strategiesrfor.
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tion in the phase space. Scaling of step sizes accounts for tistrategie§6]. Hence all frozen agents have no incentives to
dependence of the efficiency on the diversity in the scalingwitch their strategies. In fact, since the dynamics in the
regime (p~1), while kinetic sampling effects have to be attractor is periodic for smalin, with states +1 appearing
considered at higher diversity, yielding theoretical predic-once each in response to each historical string, the payoffs of
tions with excellent agreement with simulations uppte N.  all strategies become zero when averaged over a period.
However, when diversity increases further, waiting effectsthus, the Nash equilibrium is approached in the sense that
have to be considereld 7] and will be discussed in detail the fraction of fickle agents decreases with increasing diver-
glsewhere_. The var_iance of decisions dec_:reases Wi_th increa§ty' In the limit of p>N, it is probable that only one fickle
ing diversity, showing that the maladaptive behavior is re-agent switches strategy at each step in the attractor, as pre-
duced. On the other hand, the convergence time and th§cieq by Eq(64) for the casen=1. In this case, agents who
wealth spread increases with diversity. witch their decisions cannot increase their payoffs, since on

sm\gmlne (;ZZIi?éﬁ\s/:n;rre%sigtlrgnipgg] rggsr:%(}g g;)%uctaﬁ;zsheor witching, the minority ones would become losers, and the
values ofm. An extension of Eq(23) shows that wheny majority ones would change the minority side to majority

increases, the step size becomes smaller and smaller in tﬁgq Iose_(Though the.fickl_e agents are not playing pure strat-
asymptotic limit. There is a critical slowing down since the €gies, this argument implies that their pa_yoffs are the same as
convergence time diverges at=1=0.3183[17]. Whena if they are doing s9.Then a Nash eq_U|I|br|um is reached
exceedsz,, the step size vanishes before the system reachég@ctly. However, as mentioned previously, waiting effects
the attractor near the origin, so that the state of the system Recome important in the extremely diverse limit, and there
trapped at locations with at least some components being'® cases where more than one fickle agent contributes to a
nonzero. The interpretation is that wheris large, the dis- Single step in the attractor dynamics, and Nash equilibrium
tribution of strategies becomes so sparse that motions in tHgannot be reached. _ o o
phase space cannot be achieved by the switching of strate- 1h€ combination of scaling and kinetic sampling in ac-
gies. This agrees with the picture of a phase transition fronfounting for the steady-state properties of the system illus-
the symmetric to asymmetric phase wheincrease§22]. It trates the importance pf dynamical considerations in describ-
is interesting to note that the value @f is close to the value Ng the system behavior, at least for small valuesrofWe
of 0.3374 obtained by the continuum approximat[@n28] anticipate _that these dynamical e_ffec_ts will play a crucial rol_e
or batch updat¢16] using linear payoff functions. in explamlng the sy;tem behavior in the ent_|re _symme_ztrlc

Another extension to general applies to the symmetric Phase, since wher increases, the state motion in a high
phase of the exogenous game. In this case the attractor cfinensional phase space can easily shift the tail of the cu-
be approximated by a hyperpolygon enclosing the origin 0fnulatlve _payoff distributions to the verge of strategy swltch—
the phase space. Using a generating function approach, vi@d: leading to the sparseness condition \_Nhere kl_netlc sam-
have computed the variance of decisions, taking into accourling effects are relevant. Due to their generic nature
the scaling of step sizes and kinetic sampling; the analysitiherent in multiagent systems with dynamical attractors
will be presented elsewhere. The results agree qualitativelfPrmed by the collective actions of many adaptive agents, we
with simulations of both the exogenous and endogenou§XPect that these eff_ects are relevqnt to minority games with
games, except for values of close toa. In fact, whena dlﬁerent payoff functlo.ns and updatlng rules, as ngl as other
increases, there is an increasing fraction of samples in whicfiultiagent systems with adaptive agents competing for lim-
the attractors are more complex than hyperpolygons. For ejted resources. o N
ample, in the endogenous case, there is an increasing fraction The sensitivity of the steady state to the initial conditions
of attractors whose periods are no long& [29]. Instead, has |mpI|cat|on§ for adaptation and Iearmng in games. F|r§t,
their periods become multiples of the fundamental periogvhen the MG is used as a model of financial markets, it
2D. It is remarkable that the population variance is not seri-Shows that the maladaptive behavior is, to a large extent, an
ously affected by the structural change of the attractor, prob@rtifact of the homogeneous initial condition. In practice,
ably because the dynamical description of such long-periodhen agents enter the market with diverse views on the val-
attractors have strong overlaps with those of several distind{€S Of the strategies, the corresponding initial condition
attractors of period . should bg random!zed, and the market efﬁuenpy is better

In addition to step payoffs, the case of linear payoffs isthan prewo_usl_y believed. Seconc_i, when the MG is useo_l as a
equally interesting. In fact, the latter case has also been cofodel of distributed load balancing, the present study illus-
sidered recently, and the variance of decisions is also foun#fates the importance of adopting diverse initial conditions in
to decrease with diversity30]. There are significant differ- Order to attain the optimal system efficiency. The effect is
ences between the two cases, though, indicating that agerf@Miniscent of the dynamics of learning in neural networks,
striving to maximize different payoffs cause the system to" which case an excessive learning rate might hinder the
self-organize in different fashions. The details will be ex-Convergence to optimurigi].
plained elsewhere.

From the viewpoint of game theory, it is natural to con-
sider whether the introduction of diversity assists the game to ACKNOWLEDGMENTS
reach a Nash equilibrium, in contrast to the case of the ho-
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